/* LoongArch-specific support for NN-bit ELF. Copyright (C) 2021-2024 Free Software Foundation, Inc. Contributed by Loongson Ltd. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING3. If not, see . */ #include "ansidecl.h" #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #define ARCH_SIZE NN #include "elf-bfd.h" #include "objalloc.h" #include "elf/loongarch.h" #include "elfxx-loongarch.h" #include "opcode/loongarch.h" static bool loongarch_info_to_howto_rela (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) { cache_ptr->howto = loongarch_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); return cache_ptr->howto != NULL; } /* LoongArch ELF linker hash entry. */ struct loongarch_elf_link_hash_entry { struct elf_link_hash_entry elf; #define GOT_UNKNOWN 0 #define GOT_NORMAL 1 #define GOT_TLS_GD 2 #define GOT_TLS_IE 4 #define GOT_TLS_LE 8 #define GOT_TLS_GDESC 16 #define GOT_TLS_GD_BOTH_P(tls_type) \ ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GDESC)) #define GOT_TLS_GD_ANY_P(tls_type) \ ((tls_type & GOT_TLS_GD) || (tls_type & GOT_TLS_GDESC)) char tls_type; }; #define loongarch_elf_hash_entry(ent) \ ((struct loongarch_elf_link_hash_entry *) (ent)) struct _bfd_loongarch_elf_obj_tdata { struct elf_obj_tdata root; /* The tls_type for each local got entry. */ char *local_got_tls_type; }; #define _bfd_loongarch_elf_tdata(abfd) \ ((struct _bfd_loongarch_elf_obj_tdata *) (abfd)->tdata.any) #define _bfd_loongarch_elf_local_got_tls_type(abfd) \ (_bfd_loongarch_elf_tdata (abfd)->local_got_tls_type) #define _bfd_loongarch_elf_tls_type(abfd, h, symndx) \ (*((h) != NULL \ ? &loongarch_elf_hash_entry (h)->tls_type \ : &_bfd_loongarch_elf_local_got_tls_type (abfd)[symndx])) #define is_loongarch_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == LARCH_ELF_DATA) static bool elfNN_loongarch_object (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct _bfd_loongarch_elf_obj_tdata)); } struct relr_entry { asection *sec; bfd_vma off; }; struct loongarch_elf_link_hash_table { struct elf_link_hash_table elf; /* Short-cuts to get to dynamic linker sections. */ asection *sdyntdata; /* Small local sym to section mapping cache. */ struct sym_cache sym_cache; /* Used by local STT_GNU_IFUNC symbols. */ htab_t loc_hash_table; void *loc_hash_memory; /* The max alignment of output sections. */ bfd_vma max_alignment; /* The data segment phase, don't relax the section when it is exp_seg_relro_adjust. */ int *data_segment_phase; /* Array of relative relocs to be emitted in DT_RELR format. */ bfd_size_type relr_alloc; bfd_size_type relr_count; struct relr_entry *relr; /* Sorted output addresses of above relative relocs. */ bfd_vma *relr_sorted; /* Layout recomputation count. */ bfd_size_type relr_layout_iter; /* In BFD DT_RELR is implemented as a "relaxation." If in a relax trip size_relative_relocs is updating the layout, relax_section may see a partially updated state (some sections have vma updated but the others do not), and it's unsafe to do the normal relaxation. */ bool layout_mutating_for_relr; }; struct loongarch_elf_section_data { struct bfd_elf_section_data elf; /* &htab->relr[i] where i is the smallest number s.t. elf_section_data (htab->relr[i].sec) == &elf. NULL if there exists no such i. */ struct relr_entry *relr; }; /* We need an additional field in elf_section_data to handle complex interactions between DT_RELR and relaxation. */ static bool loongarch_elf_new_section_hook (bfd *abfd, asection *sec) { struct loongarch_elf_section_data *sdata; sdata = bfd_zalloc (abfd, sizeof (*sdata)); if (!sdata) return false; sec->used_by_bfd = sdata; return _bfd_elf_new_section_hook (abfd, sec); } #define loongarch_elf_section_data(x) \ ((struct loongarch_elf_section_data *) elf_section_data (x)) /* Get the LoongArch ELF linker hash table from a link_info structure. */ #define loongarch_elf_hash_table(p) \ ((struct loongarch_elf_link_hash_table *) ((p)->hash)) \ #define MINUS_ONE ((bfd_vma) 0 - 1) #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) #define LARCH_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) #define LARCH_ELF_WORD_BYTES (1 << LARCH_ELF_LOG_WORD_BYTES) #define PLT_HEADER_INSNS 8 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) #define PLT_ENTRY_INSNS 4 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) #define GOT_ENTRY_SIZE (LARCH_ELF_WORD_BYTES) /* Reserve two entries of GOTPLT for ld.so, one is used for PLT resolver _dl_runtime_resolve, the other is used for link map. */ #define GOTPLT_HEADER_SIZE (GOT_ENTRY_SIZE * 2) #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 1 #define elf_backend_plt_alignment 4 #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_sym 1 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 1) #define elf_backend_want_dynrelro 1 #define elf_backend_rela_normal 1 #define elf_backend_default_execstack 0 #define IS_LOONGARCH_TLS_TRANS_RELOC(R_TYPE) \ ((R_TYPE) == R_LARCH_TLS_DESC_PC_HI20 \ || (R_TYPE) == R_LARCH_TLS_DESC_PC_LO12 \ || (R_TYPE) == R_LARCH_TLS_DESC_LD \ || (R_TYPE) == R_LARCH_TLS_DESC_CALL \ || (R_TYPE) == R_LARCH_TLS_IE_PC_HI20 \ || (R_TYPE) == R_LARCH_TLS_IE_PC_LO12) #define IS_OUTDATED_TLS_LE_RELOC(R_TYPE) \ ((R_TYPE) == R_LARCH_TLS_LE_HI20 \ || (R_TYPE) == R_LARCH_TLS_LE_LO12 \ || (R_TYPE) == R_LARCH_TLS_LE64_LO20 \ || (R_TYPE) == R_LARCH_TLS_LE64_HI12) #define IS_CALL_RELOC(R_TYPE) \ ((R_TYPE) == R_LARCH_B26 \ ||(R_TYPE) == R_LARCH_CALL36) /* If TLS GD/IE need dynamic relocations, INDX will be the dynamic indx, and set NEED_RELOC to true used in allocate_dynrelocs and loongarch_elf_relocate_section for TLS GD/IE. */ #define LARCH_TLS_GD_IE_NEED_DYN_RELOC(INFO, DYN, H, INDX, NEED_RELOC) \ do \ { \ if ((H) != NULL \ && (H)->dynindx != -1 \ && WILL_CALL_FINISH_DYNAMIC_SYMBOL ((DYN), \ bfd_link_pic (INFO), (H))) \ (INDX) = (H)->dynindx; \ if (((H) == NULL \ || ELF_ST_VISIBILITY ((H)->other) == STV_DEFAULT \ || (H)->root.type != bfd_link_hash_undefweak) \ && (!bfd_link_executable (INFO) \ || (INDX) != 0)) \ (NEED_RELOC) = true; \ } \ while (0) /* TL;DR always use it in this file instead when you want to type SYMBOL_REFERENCES_LOCAL. It's like SYMBOL_REFERENCES_LOCAL, but it returns true for local protected functions. It happens to be same as SYMBOL_CALLS_LOCAL but let's not reuse SYMBOL_CALLS_LOCAL or "CALLS" may puzzle people. We do generate a PLT entry when someone attempts to la.pcrel an external function. But we never really implemented "R_LARCH_COPY", thus we've never supported la.pcrel an external symbol unless the loaded address is only used for locating a function to be called. Thus the PLT entry is a normal PLT entry, not intended to be a so-called "canonical PLT entry" on the ports supporting copy relocation. So attempting to la.pcrel an external function will just break pointer equality, even it's a STV_DEFAULT function: $ cat t.c #include void check(void *p) {assert(p == check);} $ cat main.c extern void check(void *); int main(void) { check(check); } $ cc t.c -fPIC -shared -o t.so $ cc main.c -mdirect-extern-access t.so -Wl,-rpath=. -fpie -pie $ ./a.out a.out: t.c:2: check: Assertion `p == check' failed. Aborted Thus handling STV_PROTECTED function specially just fixes nothing: adding -fvisibility=protected compiling t.c will not magically fix the inequality. The only possible and correct fix is not to use -mdirect-extern-access. So we should remove this special handling, because it's only an unsuccessful workaround for invalid code and it's penalizing valid code. */ #define LARCH_REF_LOCAL(info, h) \ (_bfd_elf_symbol_refs_local_p ((h), (info), true)) /* Generate a PLT header. */ static bool loongarch_make_plt_header (bfd_vma got_plt_addr, bfd_vma plt_header_addr, uint32_t *entry) { bfd_vma pcrel = got_plt_addr - plt_header_addr; bfd_vma hi, lo; if (pcrel + 0x80000800 > 0xffffffff) { _bfd_error_handler (_("%#" PRIx64 " invaild imm"), (uint64_t) pcrel); bfd_set_error (bfd_error_bad_value); return false; } hi = ((pcrel + 0x800) >> 12) & 0xfffff; lo = pcrel & 0xfff; /* pcaddu12i $t2, %hi(%pcrel(.got.plt)) sub.[wd] $t1, $t1, $t3 ld.[wd] $t3, $t2, %lo(%pcrel(.got.plt)) # _dl_runtime_resolve addi.[wd] $t1, $t1, -(PLT_HEADER_SIZE + 12) addi.[wd] $t0, $t2, %lo(%pcrel(.got.plt)) srli.[wd] $t1, $t1, log2(16 / GOT_ENTRY_SIZE) ld.[wd] $t0, $t0, GOT_ENTRY_SIZE jirl $r0, $t3, 0 */ if (GOT_ENTRY_SIZE == 8) { entry[0] = 0x1c00000e | (hi & 0xfffff) << 5; entry[1] = 0x0011bdad; entry[2] = 0x28c001cf | (lo & 0xfff) << 10; entry[3] = 0x02c001ad | ((-(PLT_HEADER_SIZE + 12)) & 0xfff) << 10; entry[4] = 0x02c001cc | (lo & 0xfff) << 10; entry[5] = 0x004501ad | (4 - LARCH_ELF_LOG_WORD_BYTES) << 10; entry[6] = 0x28c0018c | GOT_ENTRY_SIZE << 10; entry[7] = 0x4c0001e0; } else { entry[0] = 0x1c00000e | (hi & 0xfffff) << 5; entry[1] = 0x00113dad; entry[2] = 0x288001cf | (lo & 0xfff) << 10; entry[3] = 0x028001ad | ((-(PLT_HEADER_SIZE + 12)) & 0xfff) << 10; entry[4] = 0x028001cc | (lo & 0xfff) << 10; entry[5] = 0x004481ad | (4 - LARCH_ELF_LOG_WORD_BYTES) << 10; entry[6] = 0x2880018c | GOT_ENTRY_SIZE << 10; entry[7] = 0x4c0001e0; } return true; } /* Generate a PLT entry. */ static bool loongarch_make_plt_entry (bfd_vma got_plt_entry_addr, bfd_vma plt_entry_addr, uint32_t *entry) { bfd_vma pcrel = got_plt_entry_addr - plt_entry_addr; bfd_vma hi, lo; if (pcrel + 0x80000800 > 0xffffffff) { _bfd_error_handler (_("%#" PRIx64 " invaild imm"), (uint64_t) pcrel); bfd_set_error (bfd_error_bad_value); return false; } hi = ((pcrel + 0x800) >> 12) & 0xfffff; lo = pcrel & 0xfff; entry[0] = 0x1c00000f | (hi & 0xfffff) << 5; entry[1] = ((GOT_ENTRY_SIZE == 8 ? 0x28c001ef : 0x288001ef) | (lo & 0xfff) << 10); entry[2] = 0x4c0001ed; /* jirl $r13, $15, 0 */ entry[3] = 0x03400000; /* nop */ return true; } /* Create an entry in an LoongArch ELF linker hash table. */ static struct bfd_hash_entry * link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct loongarch_elf_link_hash_entry *eh; /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (*eh)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { eh = (struct loongarch_elf_link_hash_entry *) entry; eh->tls_type = GOT_UNKNOWN; } return entry; } /* Compute a hash of a local hash entry. We use elf_link_hash_entry for local symbol so that we can handle local STT_GNU_IFUNC symbols as global symbol. We reuse indx and dynstr_index for local symbol hash since they aren't used by global symbols in this backend. */ static hashval_t elfNN_loongarch_local_htab_hash (const void *ptr) { struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) ptr; return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); } /* Compare local hash entries. */ static int elfNN_loongarch_local_htab_eq (const void *ptr1, const void *ptr2) { struct elf_link_hash_entry *h1 = (struct elf_link_hash_entry *) ptr1; struct elf_link_hash_entry *h2 = (struct elf_link_hash_entry *) ptr2; return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; } /* Find and/or create a hash entry for local symbol. */ static struct elf_link_hash_entry * elfNN_loongarch_get_local_sym_hash (struct loongarch_elf_link_hash_table *htab, bfd *abfd, const Elf_Internal_Rela *rel, bool create) { struct loongarch_elf_link_hash_entry e, *ret; asection *sec = abfd->sections; hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, ELFNN_R_SYM (rel->r_info)); void **slot; e.elf.indx = sec->id; e.elf.dynstr_index = ELFNN_R_SYM (rel->r_info); slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, create ? INSERT : NO_INSERT); if (!slot) return NULL; if (*slot) { ret = (struct loongarch_elf_link_hash_entry *) *slot; return &ret->elf; } ret = ((struct loongarch_elf_link_hash_entry *) objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, sizeof (struct loongarch_elf_link_hash_entry))); if (ret) { memset (ret, 0, sizeof (*ret)); ret->elf.indx = sec->id; ret->elf.pointer_equality_needed = 0; ret->elf.dynstr_index = ELFNN_R_SYM (rel->r_info); ret->elf.dynindx = -1; ret->elf.needs_plt = 0; ret->elf.plt.refcount = -1; ret->elf.got.refcount = -1; ret->elf.def_dynamic = 0; ret->elf.def_regular = 1; ret->elf.ref_dynamic = 0; /* This should be always 0 for local. */ ret->elf.ref_regular = 0; ret->elf.forced_local = 1; ret->elf.root.type = bfd_link_hash_defined; *slot = ret; } return &ret->elf; } /* Destroy an LoongArch elf linker hash table. */ static void elfNN_loongarch_link_hash_table_free (bfd *obfd) { struct loongarch_elf_link_hash_table *ret; ret = (struct loongarch_elf_link_hash_table *) obfd->link.hash; if (ret->loc_hash_table) htab_delete (ret->loc_hash_table); if (ret->loc_hash_memory) objalloc_free ((struct objalloc *) ret->loc_hash_memory); _bfd_elf_link_hash_table_free (obfd); } /* Create a LoongArch ELF linker hash table. */ static struct bfd_link_hash_table * loongarch_elf_link_hash_table_create (bfd *abfd) { struct loongarch_elf_link_hash_table *ret; bfd_size_type amt = sizeof (struct loongarch_elf_link_hash_table); ret = (struct loongarch_elf_link_hash_table *) bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, sizeof (struct loongarch_elf_link_hash_entry))) { free (ret); return NULL; } ret->max_alignment = MINUS_ONE; ret->loc_hash_table = htab_try_create (1024, elfNN_loongarch_local_htab_hash, elfNN_loongarch_local_htab_eq, NULL); ret->loc_hash_memory = objalloc_create (); if (!ret->loc_hash_table || !ret->loc_hash_memory) { elfNN_loongarch_link_hash_table_free (abfd); return NULL; } ret->elf.root.hash_table_free = elfNN_loongarch_link_hash_table_free; return &ret->elf.root; } /* Merge backend specific data from an object file to the output object file when linking. */ static bool elfNN_loongarch_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; flagword in_flags = elf_elfheader (ibfd)->e_flags; flagword out_flags = elf_elfheader (obfd)->e_flags; if (!is_loongarch_elf (ibfd) || !is_loongarch_elf (obfd)) return true; if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) { _bfd_error_handler (_("%pB: ABI is incompatible with that of " "the selected emulation:\n" " target emulation `%s' does not match `%s'"), ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); return false; } if (!_bfd_elf_merge_object_attributes (ibfd, info)) return false; /* If the input BFD is not a dynamic object and it does not contain any non-data sections, do not account its ABI. For example, various packages produces such data-only relocatable objects with `ld -r -b binary` or `objcopy`, and these objects have zero e_flags. But they are compatible with all ABIs. */ if (!(ibfd->flags & DYNAMIC)) { asection *sec; bool have_code_sections = false; for (sec = ibfd->sections; sec != NULL; sec = sec->next) if ((bfd_section_flags (sec) & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) { have_code_sections = true; break; } if (!have_code_sections) return true; } if (!elf_flags_init (obfd)) { elf_flags_init (obfd) = true; elf_elfheader (obfd)->e_flags = in_flags; return true; } else if (out_flags != in_flags) { if ((EF_LOONGARCH_IS_OBJ_V0 (out_flags) && EF_LOONGARCH_IS_OBJ_V1 (in_flags)) || (EF_LOONGARCH_IS_OBJ_V0 (in_flags) && EF_LOONGARCH_IS_OBJ_V1 (out_flags))) { elf_elfheader (obfd)->e_flags |= EF_LOONGARCH_OBJABI_V1; out_flags = elf_elfheader (obfd)->e_flags; in_flags = out_flags; } } /* Disallow linking different ABIs. */ /* Only check relocation version. The obj_v0 is compatible with obj_v1. */ if (EF_LOONGARCH_ABI(out_flags ^ in_flags) & EF_LOONGARCH_ABI_MASK) { _bfd_error_handler (_("%pB: can't link different ABI object."), ibfd); goto fail; } return true; fail: bfd_set_error (bfd_error_bad_value); return false; } /* Create the .got section. */ static bool loongarch_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) { flagword flags; char *name; asection *s, *s_got; struct elf_link_hash_entry *h; const struct elf_backend_data *bed = get_elf_backend_data (abfd); struct elf_link_hash_table *htab = elf_hash_table (info); /* This function may be called more than once. */ if (htab->sgot != NULL) return true; flags = bed->dynamic_sec_flags; name = bed->rela_plts_and_copies_p ? ".rela.got" : ".rel.got"; s = bfd_make_section_anyway_with_flags (abfd, name, flags | SEC_READONLY); if (s == NULL || !bfd_set_section_alignment (s, bed->s->log_file_align)) return false; htab->srelgot = s; s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); if (s == NULL || !bfd_set_section_alignment (s, bed->s->log_file_align)) return false; htab->sgot = s; /* The first bit of the global offset table is the header. */ s->size += bed->got_header_size; if (bed->want_got_plt) { s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); if (s == NULL || !bfd_set_section_alignment (s, bed->s->log_file_align)) return false; htab->sgotplt = s; /* Reserve room for the header. */ s->size = GOTPLT_HEADER_SIZE; } if (bed->want_got_sym) { /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got section. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = _bfd_elf_define_linkage_sym (abfd, info, s_got, "_GLOBAL_OFFSET_TABLE_"); elf_hash_table (info)->hgot = h; if (h == NULL) return false; } return true; } /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts to them in our hash table. */ static bool loongarch_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) { struct loongarch_elf_link_hash_table *htab; htab = loongarch_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (!loongarch_elf_create_got_section (dynobj, info)) return false; if (!_bfd_elf_create_dynamic_sections (dynobj, info)) return false; if (!bfd_link_pic (info)) htab->sdyntdata = bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", SEC_ALLOC | SEC_THREAD_LOCAL); if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) abort (); return true; } static bool loongarch_elf_record_tls_and_got_reference (bfd *abfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, unsigned long symndx, char tls_type) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* This is a global offset table entry for a local symbol. */ if (elf_local_got_refcounts (abfd) == NULL) { bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (tls_type)); if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) return false; _bfd_loongarch_elf_local_got_tls_type (abfd) = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); } switch (tls_type) { case GOT_NORMAL: case GOT_TLS_GD: case GOT_TLS_IE: case GOT_TLS_GDESC: /* Need GOT. */ if (htab->elf.sgot == NULL && !loongarch_elf_create_got_section (htab->elf.dynobj, info)) return false; if (h) { if (h->got.refcount < 0) h->got.refcount = 0; h->got.refcount++; } else elf_local_got_refcounts (abfd)[symndx]++; break; case GOT_TLS_LE: /* No need for GOT. */ break; default: _bfd_error_handler (_("Internal error: unreachable.")); return false; } char *new_tls_type = &_bfd_loongarch_elf_tls_type (abfd, h, symndx); *new_tls_type |= tls_type; /* If a symbol is accessed by both IE and DESC, relax DESC to IE. */ if ((*new_tls_type & GOT_TLS_IE) && (*new_tls_type & GOT_TLS_GDESC)) *new_tls_type &= ~ (GOT_TLS_GDESC); if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) { _bfd_error_handler (_("%pB: `%s' accessed both as normal and " "thread local symbol"), abfd, h ? h->root.root.string : ""); return false; } return true; } static unsigned int loongarch_reloc_got_type (unsigned int r_type) { switch (r_type) { case R_LARCH_TLS_DESC_PC_HI20: case R_LARCH_TLS_DESC_PC_LO12: case R_LARCH_TLS_DESC_LD: case R_LARCH_TLS_DESC_CALL: return GOT_TLS_GDESC; case R_LARCH_TLS_IE_PC_HI20: case R_LARCH_TLS_IE_PC_LO12: return GOT_TLS_IE; default: break; } return GOT_UNKNOWN; } /* Return true if tls type transition can be performed. */ static bool loongarch_can_trans_tls (bfd *input_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, unsigned int r_symndx, unsigned int r_type) { char symbol_tls_type; unsigned int reloc_got_type; /* Only TLS DESC/IE in normal code mode will perform type transition. */ if (! IS_LOONGARCH_TLS_TRANS_RELOC (r_type)) return false; /* Obtaining tls got type here may occur before loongarch_elf_record_tls_and_got_reference, so it is necessary to ensure that tls got type has been initialized, otherwise it is set to GOT_UNKNOWN. */ symbol_tls_type = GOT_UNKNOWN; if (_bfd_loongarch_elf_local_got_tls_type (input_bfd) || h) symbol_tls_type = _bfd_loongarch_elf_tls_type (input_bfd, h, r_symndx); reloc_got_type = loongarch_reloc_got_type (r_type); if (symbol_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type)) return true; if (! bfd_link_executable (info)) return false; if (h && h->root.type == bfd_link_hash_undefweak) return false; return true; } /* The type of relocation that can be transitioned. */ static unsigned int loongarch_tls_transition_without_check (struct bfd_link_info *info, unsigned int r_type, struct elf_link_hash_entry *h) { bool local_exec = bfd_link_executable (info) && LARCH_REF_LOCAL (info, h); switch (r_type) { case R_LARCH_TLS_DESC_PC_HI20: return (local_exec ? R_LARCH_TLS_LE_HI20 : R_LARCH_TLS_IE_PC_HI20); case R_LARCH_TLS_DESC_PC_LO12: return (local_exec ? R_LARCH_TLS_LE_LO12 : R_LARCH_TLS_IE_PC_LO12); case R_LARCH_TLS_DESC_LD: case R_LARCH_TLS_DESC_CALL: return R_LARCH_NONE; case R_LARCH_TLS_IE_PC_HI20: return local_exec ? R_LARCH_TLS_LE_HI20 : r_type; case R_LARCH_TLS_IE_PC_LO12: return local_exec ? R_LARCH_TLS_LE_LO12 : r_type; default: break; } return r_type; } static unsigned int loongarch_tls_transition (bfd *input_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, unsigned int r_symndx, unsigned int r_type) { if (! loongarch_can_trans_tls (input_bfd, info, h, r_symndx, r_type)) return r_type; return loongarch_tls_transition_without_check (info, r_type, h); } static bool bad_static_reloc (struct bfd_link_info *info, bfd *abfd, const Elf_Internal_Rela *rel, asection *sec, unsigned r_type, struct elf_link_hash_entry *h, Elf_Internal_Sym *isym) { reloc_howto_type * r = loongarch_elf_rtype_to_howto (abfd, r_type); const char *object; const char *pic; const char *name = NULL; if (h) name = h->root.root.string; else if (isym) name = bfd_elf_string_from_elf_section (abfd, elf_symtab_hdr (abfd).sh_link, isym->st_name); if (name == NULL || *name == '\0') name =""; if (bfd_link_dll (info)) { object = _("a shared object"); pic = _("; recompile with -fPIC"); } else { if (bfd_link_pie (info)) object = _("a PIE object"); else object = _("a PDE object"); pic = _("; recompile with -fPIE"); } (*_bfd_error_handler) (_("%pB:(%pA+%#lx): relocation %s against `%s` can not be used when making " "%s%s"), abfd, sec, (long) rel->r_offset, r ? r->name : _(""), name, object, pic); bfd_set_error (bfd_error_bad_value); return false; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table or procedure linkage table. */ static bool loongarch_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct loongarch_elf_link_hash_table *htab; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; const Elf_Internal_Rela *rel; asection *sreloc = NULL; if (bfd_link_relocatable (info)) return true; htab = loongarch_elf_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; for (rel = relocs; rel < relocs + sec->reloc_count; rel++) { unsigned int r_type; unsigned int r_symndx; struct elf_link_hash_entry *h; bool is_abs_symbol = false; Elf_Internal_Sym *isym = NULL; r_symndx = ELFNN_R_SYM (rel->r_info); r_type = ELFNN_R_TYPE (rel->r_info); if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) { _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx); return false; } if (r_symndx < symtab_hdr->sh_info) { /* A local symbol. */ isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, abfd, r_symndx); if (isym == NULL) return false; is_abs_symbol = isym->st_shndx == SHN_ABS; if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) { h = elfNN_loongarch_get_local_sym_hash (htab, abfd, rel, true); if (h == NULL) return false; h->type = STT_GNU_IFUNC; h->ref_regular = 1; } else h = NULL; } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; is_abs_symbol = bfd_is_abs_symbol (&h->root); } /* It is referenced by a non-shared object. */ if (h != NULL) h->ref_regular = 1; if (h && h->type == STT_GNU_IFUNC) { if (htab->elf.dynobj == NULL) htab->elf.dynobj = abfd; /* Create 'irelifunc' in PIC object. */ if (bfd_link_pic (info) && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) return false; /* If '.plt' not represent, create '.iplt' to deal with ifunc. */ else if (!htab->elf.splt && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) return false; /* Create the ifunc sections, iplt and ipltgot, for static executables. */ if ((r_type == R_LARCH_64 || r_type == R_LARCH_32) && !_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) return false; if (h->plt.refcount < 0) h->plt.refcount = 0; h->plt.refcount++; h->needs_plt = 1; elf_tdata (info->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; } int need_dynreloc = 0; int only_need_pcrel = 0; /* Type transitions are only possible with relocations accompanied by R_LARCH_RELAX. */ if (rel + 1 != relocs + sec->reloc_count && ELFNN_R_TYPE (rel[1].r_info) == R_LARCH_RELAX) r_type = loongarch_tls_transition (abfd, info, h, r_symndx, r_type); /* I don't want to spend time supporting DT_RELR with old object files doing stack-based relocs. */ if (info->enable_dt_relr && r_type >= R_LARCH_SOP_PUSH_PCREL && r_type <= R_LARCH_SOP_POP_32_U) { /* xgettext:c-format */ _bfd_error_handler (_("%pB: stack based reloc type (%u) is not " "supported with -z pack-relative-relocs"), abfd, r_type); return false; } switch (r_type) { case R_LARCH_GOT_PC_HI20: case R_LARCH_GOT_HI20: case R_LARCH_SOP_PUSH_GPREL: /* For la.global. */ if (h) h->pointer_equality_needed = 1; if (!loongarch_elf_record_tls_and_got_reference (abfd, info, h, r_symndx, GOT_NORMAL)) return false; break; case R_LARCH_TLS_LD_PC_HI20: case R_LARCH_TLS_LD_HI20: case R_LARCH_TLS_GD_PC_HI20: case R_LARCH_TLS_GD_HI20: case R_LARCH_SOP_PUSH_TLS_GD: if (!loongarch_elf_record_tls_and_got_reference (abfd, info, h, r_symndx, GOT_TLS_GD)) return false; break; case R_LARCH_TLS_IE_PC_HI20: case R_LARCH_TLS_IE_HI20: case R_LARCH_SOP_PUSH_TLS_GOT: if (bfd_link_pic (info)) /* May fail for lazy-bind. */ info->flags |= DF_STATIC_TLS; if (!loongarch_elf_record_tls_and_got_reference (abfd, info, h, r_symndx, GOT_TLS_IE)) return false; break; case R_LARCH_TLS_LE_HI20: case R_LARCH_TLS_LE_HI20_R: case R_LARCH_SOP_PUSH_TLS_TPREL: if (!bfd_link_executable (info)) return bad_static_reloc (info, abfd, rel, sec, r_type, h, isym); if (!loongarch_elf_record_tls_and_got_reference (abfd, info, h, r_symndx, GOT_TLS_LE)) return false; break; case R_LARCH_TLS_DESC_PC_HI20: case R_LARCH_TLS_DESC_HI20: if (!loongarch_elf_record_tls_and_got_reference (abfd, info, h, r_symndx, GOT_TLS_GDESC)) return false; break; case R_LARCH_ABS_HI20: if (bfd_link_pic (info)) return bad_static_reloc (info, abfd, rel, sec, r_type, h, isym); /* Fall through. */ case R_LARCH_SOP_PUSH_ABSOLUTE: if (h != NULL) /* If this reloc is in a read-only section, we might need a copy reloc. We can't check reliably at this stage whether the section is read-only, as input sections have not yet been mapped to output sections. Tentatively set the flag for now, and correct in adjust_dynamic_symbol. */ h->non_got_ref = 1; break; /* Since shared library global symbols interpose, any PC-relative relocations against external symbols should not be used to build shared libraries. */ case R_LARCH_PCREL20_S2: if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0 && (sec->flags & SEC_READONLY) != 0 && ! LARCH_REF_LOCAL (info, h)) return bad_static_reloc (info, abfd, rel, sec, r_type, h, NULL); break; /* For normal cmodel, pcalau12i + addi.d/w used to data. For first version medium cmodel, pcalau12i + jirl are used to function call, it need to creat PLT entry for STT_FUNC and STT_GNU_IFUNC type symbol. */ case R_LARCH_PCALA_HI20: if (h != NULL && (STT_FUNC == h->type || STT_GNU_IFUNC == h->type)) { /* For pcalau12i + jirl. */ h->needs_plt = 1; if (h->plt.refcount < 0) h->plt.refcount = 0; h->plt.refcount++; h->non_got_ref = 1; h->pointer_equality_needed = 1; } /* PC-relative relocations are allowed For first version medium cmodel function call. */ if (h != NULL && !h->needs_plt && bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0 && (sec->flags & SEC_READONLY) != 0 && ! LARCH_REF_LOCAL (info, h)) return bad_static_reloc (info, abfd, rel, sec, r_type, h, NULL); break; case R_LARCH_B16: case R_LARCH_B21: case R_LARCH_B26: case R_LARCH_CALL36: if (h != NULL) { h->needs_plt = 1; if (!bfd_link_pic (info)) h->non_got_ref = 1; /* We try to create PLT stub for all non-local function. */ if (h->plt.refcount < 0) h->plt.refcount = 0; h->plt.refcount++; } break; case R_LARCH_SOP_PUSH_PCREL: if (h != NULL) { if (!bfd_link_pic (info)) h->non_got_ref = 1; /* We try to create PLT stub for all non-local function. */ if (h->plt.refcount < 0) h->plt.refcount = 0; h->plt.refcount++; h->pointer_equality_needed = 1; } break; case R_LARCH_SOP_PUSH_PLT_PCREL: /* This symbol requires a procedure linkage table entry. We actually build the entry in adjust_dynamic_symbol, because this might be a case of linking PIC code without linking in any dynamic objects, in which case we don't need to generate a procedure linkage table after all. */ if (h != NULL) { h->needs_plt = 1; if (h->plt.refcount < 0) h->plt.refcount = 0; h->plt.refcount++; } break; case R_LARCH_TLS_DTPREL32: case R_LARCH_TLS_DTPREL64: need_dynreloc = 1; only_need_pcrel = 1; break; case R_LARCH_32: if (ARCH_SIZE > 32 && bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0) { if (!is_abs_symbol) { _bfd_error_handler (_("%pB: relocation R_LARCH_32 against non-absolute " "symbol `%s' cannot be used in ELFCLASS64 when " "making a shared object or PIE"), abfd, h ? h->root.root.string : "a local symbol"); bfd_set_error (bfd_error_bad_value); return false; } } /* Fall through. */ case R_LARCH_JUMP_SLOT: case R_LARCH_64: /* Resolved to const. */ if (is_abs_symbol) break; need_dynreloc = 1; /* If resolved symbol is defined in this object, 1. Under pie, the symbol is known. We convert it into R_LARCH_RELATIVE and need load-addr still. 2. Under pde, the symbol is known and we can discard R_LARCH_NN. 3. Under dll, R_LARCH_NN can't be changed normally, since its defination could be covered by the one in executable. For symbolic, we convert it into R_LARCH_RELATIVE. Thus, only under pde, it needs pcrel only. We discard it. */ only_need_pcrel = bfd_link_pde (info); if (h != NULL && (!bfd_link_pic (info) || h->type == STT_GNU_IFUNC)) { /* This reloc might not bind locally. */ h->non_got_ref = 1; h->pointer_equality_needed = 1; if (!h->def_regular || (sec->flags & (SEC_CODE | SEC_READONLY)) != 0) { /* We may need a .plt entry if the symbol is a function defined in a shared lib or is a function referenced from the code or read-only section. */ h->plt.refcount += 1; } } break; case R_LARCH_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return false; break; case R_LARCH_GNU_VTENTRY: if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) return false; break; case R_LARCH_ALIGN: /* Check against irrational R_LARCH_ALIGN relocs which may cause removing an odd number of bytes and disrupt DT_RELR. */ if (rel->r_offset % 4 != 0) { /* xgettext:c-format */ _bfd_error_handler ( _("%pB: R_LARCH_ALIGN with offset %" PRId64 " not aligned " "to instruction boundary"), abfd, (uint64_t) rel->r_offset); return false; } break; default: break; } /* Record some info for sizing and allocating dynamic entry. */ if (need_dynreloc && (sec->flags & SEC_ALLOC)) { /* When creating a shared object, we must copy these relocs into the output file. We create a reloc section in dynobj and make room for the reloc. */ struct elf_dyn_relocs *p; struct elf_dyn_relocs **head; if (sreloc == NULL) { sreloc = _bfd_elf_make_dynamic_reloc_section (sec, htab->elf.dynobj, LARCH_ELF_LOG_WORD_BYTES, abfd, /*rela?*/ true); if (sreloc == NULL) return false; } /* If this is a global symbol, we count the number of relocations we need for this symbol. */ if (h != NULL) head = &h->dyn_relocs; else { /* Track dynamic relocs needed for local syms too. We really need local syms available to do this easily. Oh well. */ asection *s; void *vpp; s = bfd_section_from_elf_index (abfd, isym->st_shndx); if (s == NULL) s = sec; vpp = &elf_section_data (s)->local_dynrel; head = (struct elf_dyn_relocs **) vpp; } p = *head; if (p == NULL || p->sec != sec) { bfd_size_type amt = sizeof *p; p = (struct elf_dyn_relocs *) bfd_alloc (htab->elf.dynobj, amt); if (p == NULL) return false; p->next = *head; *head = p; p->sec = sec; p->count = 0; p->pc_count = 0; } p->count++; p->pc_count += only_need_pcrel; } } return true; } /* Find dynamic relocs for H that apply to read-only sections. */ static asection * readonly_dynrelocs (struct elf_link_hash_entry *h) { struct elf_dyn_relocs *p; for (p = h->dyn_relocs; p != NULL; p = p->next) { asection *s = p->sec->output_section; if (s != NULL && (s->flags & SEC_READONLY) != 0) return p->sec; } return NULL; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bool loongarch_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct loongarch_elf_link_hash_table *htab; bfd *dynobj; htab = loongarch_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = htab->elf.dynobj; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->type == STT_GNU_IFUNC || h->is_weakalias || (h->def_dynamic && h->ref_regular && !h->def_regular))); /* If this is a function, put it in the procedure linkage table. We will fill in the contents of the procedure linkage table later (although we could actually do it here). */ if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) { if (h->plt.refcount <= 0 || (h->type != STT_GNU_IFUNC && (LARCH_REF_LOCAL (info, h) || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)))) { /* This case can occur if we saw a R_LARCH_SOP_PUSH_PLT_PCREL reloc in an input file, but the symbol was never referred to by a dynamic object, or if all references were garbage collected. In such a case, we don't actually need to build a PLT entry. */ h->plt.offset = MINUS_ONE; h->needs_plt = 0; } return true; } else h->plt.offset = MINUS_ONE; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->is_weakalias) { struct elf_link_hash_entry *def = weakdef (h); BFD_ASSERT (def->root.type == bfd_link_hash_defined); h->root.u.def.section = def->root.u.def.section; h->root.u.def.value = def->root.u.def.value; return true; } /* R_LARCH_COPY is not adept glibc, not to generate. */ /* Can not print anything, because make check ld. */ return true; } /* Allocate space in .plt, .got and associated reloc sections for dynamic relocs. */ static bool allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info; struct loongarch_elf_link_hash_table *htab; struct elf_dyn_relocs *p; if (h->root.type == bfd_link_hash_indirect) return true; if (h->type == STT_GNU_IFUNC && h->def_regular) return true; info = (struct bfd_link_info *) inf; htab = loongarch_elf_hash_table (info); bool dyn = htab->elf.dynamic_sections_created; BFD_ASSERT (htab != NULL); do { asection *plt, *gotplt, *relplt; if (!h->needs_plt) break; h->needs_plt = 0; if (htab->elf.splt) { if (h->dynindx == -1 && !h->forced_local && dyn && h->root.type == bfd_link_hash_undefweak) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return false; } if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h) && h->type != STT_GNU_IFUNC) break; plt = htab->elf.splt; gotplt = htab->elf.sgotplt; relplt = htab->elf.srelplt; } else if (htab->elf.iplt) { /* .iplt only for IFUNC. */ if (h->type != STT_GNU_IFUNC) break; plt = htab->elf.iplt; gotplt = htab->elf.igotplt; relplt = htab->elf.irelplt; } else break; if (plt->size == 0) plt->size = PLT_HEADER_SIZE; h->plt.offset = plt->size; plt->size += PLT_ENTRY_SIZE; gotplt->size += GOT_ENTRY_SIZE; relplt->size += sizeof (ElfNN_External_Rela); /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to this location in the .plt. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!bfd_link_pic (info) && !h->def_regular) { h->root.u.def.section = plt; h->root.u.def.value = h->plt.offset; } h->needs_plt = 1; } while (0); if (!h->needs_plt) h->plt.offset = MINUS_ONE; if (0 < h->got.refcount) { asection *s; int tls_type = loongarch_elf_hash_entry (h)->tls_type; /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (h->dynindx == -1 && !h->forced_local && dyn && h->root.type == bfd_link_hash_undefweak) { if (!bfd_elf_link_record_dynamic_symbol (info, h)) return false; } s = htab->elf.sgot; h->got.offset = s->size; if (tls_type & (GOT_TLS_GD | GOT_TLS_IE | GOT_TLS_GDESC)) { int indx = 0; bool need_reloc = false; LARCH_TLS_GD_IE_NEED_DYN_RELOC (info, dyn, h, indx, need_reloc); /* TLS_GD needs two dynamic relocs and two GOT slots. */ if (tls_type & GOT_TLS_GD) { s->size += 2 * GOT_ENTRY_SIZE; if (need_reloc) htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); } /* TLS_IE needs one dynamic reloc and one GOT slot. */ if (tls_type & GOT_TLS_IE) { s->size += GOT_ENTRY_SIZE; if (need_reloc) htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); } /* TLS_DESC needs one dynamic reloc and two GOT slot. */ if (tls_type & GOT_TLS_GDESC) { s->size += GOT_ENTRY_SIZE * 2; htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); } } else { s->size += GOT_ENTRY_SIZE; if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak) && (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)) && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) /* Undefined weak symbol in static PIE resolves to 0 without any dynamic relocations. */ htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); } } else h->got.offset = MINUS_ONE; if (h->dyn_relocs == NULL) return true; /* Extra dynamic relocate, * R_LARCH_64 * R_LARCH_TLS_DTPRELNN * R_LARCH_JUMP_SLOT * R_LARCH_NN. */ if (SYMBOL_CALLS_LOCAL (info, h)) { struct elf_dyn_relocs **pp; for (pp = &h->dyn_relocs; (p = *pp) != NULL;) { p->count -= p->pc_count; p->pc_count = 0; if (p->count == 0) *pp = p->next; else pp = &p->next; } } if (h->root.type == bfd_link_hash_undefweak) { if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h) || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT || (!bfd_link_pic (info) && h->non_got_ref)) h->dyn_relocs = NULL; else if (h->dynindx == -1 && !h->forced_local) { /* Make sure this symbol is output as a dynamic symbol. Undefined weak syms won't yet be marked as dynamic. */ if (!bfd_elf_link_record_dynamic_symbol (info, h)) return false; if (h->dynindx == -1) h->dyn_relocs = NULL; } } for (p = h->dyn_relocs; p != NULL; p = p->next) { if (discarded_section (p->sec)) continue; asection *sreloc = elf_section_data (p->sec)->sreloc; sreloc->size += p->count * sizeof (ElfNN_External_Rela); } return true; } /* A modified version of _bfd_elf_allocate_ifunc_dyn_relocs. For local def and ref ifunc, dynamic relocations are stored in 1. rela.srelgot section in dynamic object (dll or exec). 2. rela.irelplt section in static executable. Unlike _bfd_elf_allocate_ifunc_dyn_relocs, rela.srelgot is used instead of rela.srelplt. Glibc ELF loader will not support R_LARCH_IRELATIVE relocation in rela.plt. */ static bool local_allocate_ifunc_dyn_relocs (struct bfd_link_info *info, struct elf_link_hash_entry *h, struct elf_dyn_relocs **head, unsigned int plt_entry_size, unsigned int plt_header_size, unsigned int got_entry_size, bool avoid_plt) { asection *plt, *gotplt, *relplt; struct elf_dyn_relocs *p; unsigned int sizeof_reloc; const struct elf_backend_data *bed; struct elf_link_hash_table *htab; /* If AVOID_PLT is TRUE, don't use PLT if possible. */ bool use_plt = !avoid_plt || h->plt.refcount > 0; bool need_dynreloc = !use_plt || bfd_link_pic (info); /* When a PIC object references a STT_GNU_IFUNC symbol defined in executable or it isn't referenced via PLT, the address of the resolved function may be used. But in non-PIC executable, the address of its plt slot may be used. Pointer equality may not work correctly. PIE or non-PLT reference should be used if pointer equality is required here. If STT_GNU_IFUNC symbol is defined in position-dependent executable, backend should change it to the normal function and set its address to its PLT entry which should be resolved by R_*_IRELATIVE at run-time. All external references should be resolved to its PLT in executable. */ if (!need_dynreloc && !(bfd_link_pde (info) && h->def_regular) && (h->dynindx != -1 || info->export_dynamic) && h->pointer_equality_needed) { info->callbacks->einfo /* xgettext:c-format. */ (_("%F%P: dynamic STT_GNU_IFUNC symbol `%s' with pointer " "equality in `%pB' can not be used when making an " "executable; recompile with -fPIE and relink with -pie\n"), h->root.root.string, h->root.u.def.section->owner); bfd_set_error (bfd_error_bad_value); return false; } htab = elf_hash_table (info); /* When the symbol is marked with regular reference, if PLT isn't used or we are building a PIC object, we must keep dynamic relocation if there is non-GOT reference and use PLT if there is PC-relative reference. */ if (need_dynreloc && h->ref_regular) { bool keep = false; for (p = *head; p != NULL; p = p->next) if (p->count) { h->non_got_ref = 1; /* Need dynamic relocations for non-GOT reference. */ keep = true; if (p->pc_count) { /* Must use PLT for PC-relative reference. */ use_plt = true; need_dynreloc = bfd_link_pic (info); break; } } if (keep) goto keep; } /* Support garbage collection against STT_GNU_IFUNC symbols. */ if (h->plt.refcount <= 0 && h->got.refcount <= 0) { h->got = htab->init_got_offset; h->plt = htab->init_plt_offset; *head = NULL; return true; } /* Return and discard space for dynamic relocations against it if it is never referenced. */ if (!h->ref_regular) { if (h->plt.refcount > 0 || h->got.refcount > 0) abort (); h->got = htab->init_got_offset; h->plt = htab->init_plt_offset; *head = NULL; return true; } keep: bed = get_elf_backend_data (info->output_bfd); if (bed->rela_plts_and_copies_p) sizeof_reloc = bed->s->sizeof_rela; else sizeof_reloc = bed->s->sizeof_rel; /* When building a static executable, use iplt, igot.plt and rela.iplt sections for STT_GNU_IFUNC symbols. */ if (htab->splt != NULL) { plt = htab->splt; gotplt = htab->sgotplt; /* Change dynamic info of ifunc gotplt from srelplt to srelgot. */ relplt = htab->srelgot; /* If this is the first plt entry and PLT is used, make room for the special first entry. */ if (plt->size == 0 && use_plt) plt->size += plt_header_size; } else { plt = htab->iplt; gotplt = htab->igotplt; relplt = htab->irelplt; } if (use_plt) { /* Don't update value of STT_GNU_IFUNC symbol to PLT. We need the original value for R_*_IRELATIVE. */ h->plt.offset = plt->size; /* Make room for this entry in the plt/iplt section. */ plt->size += plt_entry_size; /* We also need to make an entry in the got.plt/got.iplt section, which will be placed in the got section by the linker script. */ gotplt->size += got_entry_size; } /* We also need to make an entry in the rela.plt/.rela.iplt section for GOTPLT relocation if PLT is used. */ if (use_plt) { relplt->size += sizeof_reloc; relplt->reloc_count++; } /* We need dynamic relocation for STT_GNU_IFUNC symbol only when there is a non-GOT reference in a PIC object or PLT isn't used. */ if (!need_dynreloc || !h->non_got_ref) *head = NULL; /* Finally, allocate space. */ p = *head; if (p != NULL) { bfd_size_type count = 0; do { count += p->count; p = p->next; } while (p != NULL); htab->ifunc_resolvers = count != 0; /* Dynamic relocations are stored in 1. rela.srelgot section in PIC object. 2. rela.srelgot section in dynamic executable. 3. rela.irelplt section in static executable. */ if (htab->splt != NULL) htab->srelgot->size += count * sizeof_reloc; else { relplt->size += count * sizeof_reloc; relplt->reloc_count += count; } } /* For STT_GNU_IFUNC symbol, got.plt has the real function address and got has the PLT entry adddress. We will load the GOT entry with the PLT entry in finish_dynamic_symbol if it is used. For branch, it uses got.plt. For symbol value, if PLT is used, 1. Use got.plt in a PIC object if it is forced local or not dynamic. 2. Use got.plt in a non-PIC object if pointer equality isn't needed. 3. Use got.plt in PIE. 4. Use got.plt if got isn't used. 5. Otherwise use got so that it can be shared among different objects at run-time. If PLT isn't used, always use got for symbol value. We only need to relocate got entry in PIC object or in dynamic executable without PLT. */ if (use_plt && (h->got.refcount <= 0 || (bfd_link_pic (info) && (h->dynindx == -1 || h->forced_local)) || ( !h->pointer_equality_needed) || htab->sgot == NULL)) { /* Use got.plt. */ h->got.offset = (bfd_vma) -1; } else { if (!use_plt) { /* PLT isn't used. */ h->plt.offset = (bfd_vma) -1; } if (h->got.refcount <= 0) { /* GOT isn't need when there are only relocations for static pointers. */ h->got.offset = (bfd_vma) -1; } else { h->got.offset = htab->sgot->size; htab->sgot->size += got_entry_size; /* Need to relocate the GOT entry in a PIC object or PLT isn't used. Otherwise, the GOT entry will be filled with the PLT entry and dynamic GOT relocation isn't needed. */ if (need_dynreloc) { /* For non-static executable, dynamic GOT relocation is in rela.got section, but for static executable, it is in rela.iplt section. */ if (htab->splt != NULL) htab->srelgot->size += sizeof_reloc; else { relplt->size += sizeof_reloc; relplt->reloc_count++; } } } } return true; } /* Allocate space in .plt, .got and associated reloc sections for ifunc dynamic relocs. */ static bool elfNN_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, struct bfd_link_info *info, bool ref_local) { /* An example of a bfd_link_hash_indirect symbol is versioned symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) -> __gxx_personality_v0(bfd_link_hash_defined) There is no need to process bfd_link_hash_indirect symbols here because we will also be presented with the concrete instance of the symbol and loongarch_elf_copy_indirect_symbol () will have been called to copy all relevant data from the generic to the concrete symbol instance. */ if (h->root.type == bfd_link_hash_indirect) return true; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it here if it is defined and referenced in a non-shared object. */ if (h->type == STT_GNU_IFUNC && h->def_regular) { if (ref_local && LARCH_REF_LOCAL (info, h)) return local_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs, PLT_ENTRY_SIZE, PLT_HEADER_SIZE, GOT_ENTRY_SIZE, false); else if (!ref_local && !LARCH_REF_LOCAL (info, h)) return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, &h->dyn_relocs, PLT_ENTRY_SIZE, PLT_HEADER_SIZE, GOT_ENTRY_SIZE, false); } return true; } static bool elfNN_allocate_ifunc_dynrelocs_ref_local (struct elf_link_hash_entry *h, void *info) { return elfNN_allocate_ifunc_dynrelocs (h, (struct bfd_link_info *) info, true); } static bool elfNN_allocate_ifunc_dynrelocs_ref_global (struct elf_link_hash_entry *h, void *info) { return elfNN_allocate_ifunc_dynrelocs (h, (struct bfd_link_info *) info, false); } /* Allocate space in .plt, .got and associated reloc sections for ifunc dynamic relocs. */ static int elfNN_allocate_local_ifunc_dynrelocs (void **slot, void *inf) { struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot; if (h->type != STT_GNU_IFUNC || !h->def_regular || !h->ref_regular || !h->forced_local || h->root.type != bfd_link_hash_defined) abort (); return elfNN_allocate_ifunc_dynrelocs_ref_local (h, inf); } /* Set DF_TEXTREL if we find any dynamic relocs that apply to read-only sections. */ static bool maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) { asection *sec; if (h->root.type == bfd_link_hash_indirect) return true; sec = readonly_dynrelocs (h); if (sec != NULL) { struct bfd_link_info *info = (struct bfd_link_info *) info_p; info->flags |= DF_TEXTREL; info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' in " "read-only section `%pA'\n"), sec->owner, h->root.root.string, sec); /* Not an error, just cut short the traversal. */ return false; } return true; } static bool record_relr (struct loongarch_elf_link_hash_table *htab, asection *sec, bfd_vma off, asection *sreloc) { struct relr_entry **sec_relr = &loongarch_elf_section_data (sec)->relr; /* Undo the relocation section size accounting. */ BFD_ASSERT (sreloc->size >= sizeof (ElfNN_External_Rela)); sreloc->size -= sizeof (ElfNN_External_Rela); BFD_ASSERT (off % 2 == 0 && sec->alignment_power > 0); if (htab->relr_count >= htab->relr_alloc) { if (htab->relr_alloc == 0) htab->relr_alloc = 4096; else htab->relr_alloc *= 2; htab->relr = bfd_realloc (htab->relr, htab->relr_alloc * sizeof (*htab->relr)); if (!htab->relr) return false; } htab->relr[htab->relr_count].sec = sec; htab->relr[htab->relr_count].off = off; if (*sec_relr == NULL) *sec_relr = &htab->relr[htab->relr_count]; htab->relr_count++; return true; } static bool record_relr_local_got_relocs (bfd *input_bfd, struct bfd_link_info *info) { bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); char *local_tls_type = _bfd_loongarch_elf_local_got_tls_type (input_bfd); Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); if (!local_got_offsets || !local_tls_type || !bfd_link_pic (info)) return true; for (unsigned i = 0; i < symtab_hdr->sh_info; i++) { bfd_vma off = local_got_offsets[i]; /* FIXME: If the local symbol is in SHN_ABS then emitting a relative relocation is not correct, but it seems to be wrong in loongarch_elf_relocate_section too. */ if (local_tls_type[i] == GOT_NORMAL && !record_relr (htab, htab->elf.sgot, off, htab->elf.srelgot)) return false; } return true; } static bool record_relr_dyn_got_relocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info = (struct bfd_link_info *) inf; struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); if (h->root.type == bfd_link_hash_indirect) return true; if (h->type == STT_GNU_IFUNC && h->def_regular) return true; if (h->got.refcount <= 0) return true; if (loongarch_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE | GOT_TLS_GDESC)) return true; if (!bfd_link_pic (info)) return true; /* On LoongArch a GOT entry for undefined weak symbol is never relocated with R_LARCH_RELATIVE: we don't have -z dynamic-undefined-weak, thus the GOT entry is either const 0 (if the symbol is LARCH_REF_LOCAL) or relocated with R_LARCH_NN (otherwise). */ if (h->root.type == bfd_link_hash_undefweak) return true; if (!LARCH_REF_LOCAL (info, h)) return true; if (bfd_is_abs_symbol (&h->root)) return true; if (!record_relr (htab, htab->elf.sgot, h->got.offset, htab->elf.srelgot)) return false; return true; } static bool record_relr_non_got_relocs (bfd *input_bfd, struct bfd_link_info *info, asection *sec) { asection *sreloc; struct loongarch_elf_link_hash_table *htab; Elf_Internal_Rela *relocs, *rel, *rel_end; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; if (!bfd_link_pic (info)) return true; if (sec->reloc_count == 0) return true; if ((sec->flags & (SEC_RELOC | SEC_ALLOC | SEC_DEBUGGING)) != (SEC_RELOC | SEC_ALLOC)) return true; if (sec->alignment_power == 0) return true; if (discarded_section (sec)) return true; sreloc = elf_section_data (sec)->sreloc; if (sreloc == NULL) return true; htab = loongarch_elf_hash_table (info); symtab_hdr = &elf_symtab_hdr (input_bfd); sym_hashes = elf_sym_hashes (input_bfd); relocs = _bfd_elf_link_info_read_relocs (input_bfd, info, sec, NULL, NULL, info->keep_memory); BFD_ASSERT (relocs != NULL); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { unsigned r_symndx = ELFNN_R_SYM (rel->r_info); unsigned int r_type = ELFNN_R_TYPE (rel->r_info); struct elf_link_hash_entry *h = NULL; asection *def_sec = NULL; if ((r_type != R_LARCH_64 && r_type != R_LARCH_32) || rel->r_offset % 2 != 0) continue; /* The logical below must match loongarch_elf_relocate_section. */ if (r_symndx < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, input_bfd, r_symndx); BFD_ASSERT(isym != NULL); /* Local STT_GNU_IFUNC symbol uses R_LARCH_IRELATIVE for R_LARCH_NN, not R_LARCH_RELATIVE. */ if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) continue; def_sec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); } else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* Filter out symbols that cannot have a relative reloc. */ if (h->dyn_relocs == NULL) continue; if (bfd_is_abs_symbol (&h->root)) continue; if (h->type == STT_GNU_IFUNC) continue; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) def_sec = h->root.u.def.section; /* On LoongArch an R_LARCH_NN against undefined weak symbol is never converted to R_LARCH_RELATIVE: we don't have -z dynamic-undefined-weak, thus the reloc is either removed (if the symbol is LARCH_REF_LOCAL) or kept (otherwise). */ if (h->root.type == bfd_link_hash_undefweak) continue; if (!LARCH_REF_LOCAL (info, h)) continue; } if (!def_sec || discarded_section (def_sec)) continue; if (!record_relr (htab, sec, rel->r_offset, sreloc)) return false; } return true; } static int cmp_relr_addr (const void *p, const void *q) { const bfd_vma *a = p, *b = q; return (*a > *b) - (*a < *b); } static bool sort_relr (struct bfd_link_info *info, struct loongarch_elf_link_hash_table *htab) { if (htab->relr_count == 0) return true; bfd_vma *addr = htab->relr_sorted; if (!addr) { addr = bfd_malloc (htab->relr_count * sizeof (*addr)); if (!addr) return false; htab->relr_sorted = addr; } for (bfd_size_type i = 0; i < htab->relr_count; i++) { bfd_vma off = _bfd_elf_section_offset (info->output_bfd, info, htab->relr[i].sec, htab->relr[i].off); addr[i] = htab->relr[i].sec->output_section->vma + htab->relr[i].sec->output_offset + off; } qsort(addr, htab->relr_count, sizeof (*addr), cmp_relr_addr); return true; } static bool loongarch_elf_size_relative_relocs (struct bfd_link_info *info, bool *need_layout) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); asection *srelrdyn = htab->elf.srelrdyn; *need_layout = false; if (!sort_relr (info, htab)) return false; bfd_vma *addr = htab->relr_sorted; BFD_ASSERT (srelrdyn != NULL); bfd_size_type oldsize = srelrdyn->size; srelrdyn->size = 0; for (bfd_size_type i = 0; i < htab->relr_count; ) { bfd_vma base = addr[i]; i++; srelrdyn->size += NN / 8; base += NN / 8; while (1) { bfd_size_type start_i = i; while (i < htab->relr_count && addr[i] - base < (NN - 1) * (NN / 8) && (addr[i] - base) % (NN / 8) == 0) i++; if (i == start_i) break; srelrdyn->size += NN / 8; base += (NN - 1) * (NN / 8); } } if (srelrdyn->size != oldsize) { *need_layout = true; /* Stop after a few iterations in case the layout does not converge, but we can only stop when the size would shrink (and pad the spare space with 1. */ if (htab->relr_layout_iter++ > 5 && srelrdyn->size < oldsize) { srelrdyn->size = oldsize; *need_layout = false; } } htab->layout_mutating_for_relr = *need_layout; return true; } static bool loongarch_elf_finish_relative_relocs (struct bfd_link_info *info) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); asection *srelrdyn = htab->elf.srelrdyn; bfd *dynobj = htab->elf.dynobj; if (!srelrdyn || srelrdyn->size == 0) return true; srelrdyn->contents = bfd_alloc (dynobj, srelrdyn->size); if (!srelrdyn->contents) return false; bfd_vma *addr = htab->relr_sorted; bfd_byte *loc = srelrdyn->contents; for (bfd_size_type i = 0; i < htab->relr_count; ) { bfd_vma base = addr[i]; i++; bfd_put_NN (dynobj, base, loc); loc += NN / 8; base += NN / 8; while (1) { uintNN_t bits = 0; while (i < htab->relr_count) { bfd_vma delta = addr[i] - base; if (delta >= (NN - 1) * (NN / 8) || delta % (NN / 8) != 0) break; bits |= (uintNN_t) 1 << (delta / (NN / 8)); i++; } if (bits == 0) break; bfd_put_NN (dynobj, (bits << 1) | 1, loc); loc += NN / 8; base += (NN - 1) * (NN / 8); } } free (addr); htab->relr_sorted = NULL; /* Pad any excess with 1's, a do-nothing encoding. */ while (loc < srelrdyn->contents + srelrdyn->size) { bfd_put_NN (dynobj, 1, loc); loc += NN / 8; } return true; } static bool loongarch_elf_late_size_sections (bfd *output_bfd, struct bfd_link_info *info) { struct loongarch_elf_link_hash_table *htab; bfd *dynobj; asection *s; bfd *ibfd; htab = loongarch_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = htab->elf.dynobj; if (dynobj == NULL) return true; if (htab->elf.dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (bfd_link_executable (info) && !info->nointerp) { const char *interpreter; s = bfd_get_linker_section (dynobj, ".interp"); BFD_ASSERT (s != NULL); if (elf_elfheader (output_bfd)->e_ident[EI_CLASS] == ELFCLASS32) interpreter = "/lib32/ld.so.1"; else if (elf_elfheader (output_bfd)->e_ident[EI_CLASS] == ELFCLASS64) interpreter = "/lib64/ld.so.1"; else interpreter = "/lib/ld.so.1"; s->contents = (unsigned char *) interpreter; s->size = strlen (interpreter) + 1; } } /* Set up .got offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) { bfd_signed_vma *local_got; bfd_signed_vma *end_local_got; char *local_tls_type; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (!is_loongarch_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) { struct elf_dyn_relocs *p; for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) { p->count -= p->pc_count; if (!bfd_is_abs_section (p->sec) && bfd_is_abs_section (p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (0 < p->count) { srel = elf_section_data (p->sec)->sreloc; srel->size += p->count * sizeof (ElfNN_External_Rela); if ((p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_got = elf_local_got_refcounts (ibfd); if (!local_got) continue; symtab_hdr = &elf_symtab_hdr (ibfd); locsymcount = symtab_hdr->sh_info; end_local_got = local_got + locsymcount; local_tls_type = _bfd_loongarch_elf_local_got_tls_type (ibfd); s = htab->elf.sgot; srel = htab->elf.srelgot; for (; local_got < end_local_got; ++local_got, ++local_tls_type) { if (0 < *local_got) { *local_got = s->size; if (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE | GOT_TLS_GDESC)) { /* TLS gd use two got. */ if (*local_tls_type & GOT_TLS_GD) { s->size += 2 * GOT_ENTRY_SIZE; if (!bfd_link_executable (info)) srel->size += sizeof (ElfNN_External_Rela); } /* TLS_DESC use two got. */ if (*local_tls_type & GOT_TLS_GDESC) { s->size += 2 * GOT_ENTRY_SIZE; srel->size += sizeof (ElfNN_External_Rela); } /* TLS ie and use one got. */ if (*local_tls_type & GOT_TLS_IE) { s->size += GOT_ENTRY_SIZE; if (!bfd_link_executable (info)) srel->size += sizeof (ElfNN_External_Rela); } } else { s->size += GOT_ENTRY_SIZE; srel->size += sizeof (ElfNN_External_Rela); } } else *local_got = MINUS_ONE; } } /* Allocate global sym .plt and .got entries, and space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); /* Allocate global ifunc sym .plt and .got entries, and space for *preemptible* ifunc sym dynamic relocs. Note that we must do it for *all* preemptible ifunc (including local ifuncs and STV_HIDDEN ifuncs) before doing it for any non-preemptible ifunc symbol: assuming we are not so careful, when we link a shared library the correlation of .plt and .rela.plt might look like: idx in .plt idx in .rela.plt ext_func1@plt 0 0 ext_func2@plt 1 1 ext_func3@plt 2 2 hidden_ifunc1@plt 3 None: it's in .rela.got hidden_ifunc2@plt 4 None: it's in .rela.got normal_ifunc1@plt 5 != 3 normal_ifunc2@plt 6 != 4 local_ifunc@plt 7 None: it's in .rela.got Now oops the indices for normal_ifunc{1,2} in .rela.plt were different from the indices in .plt :(. This would break finish_dynamic_symbol which assumes the index in .rela.plt matches the index in .plt. So let's be careful and make it correct: idx in .plt idx in .rela.plt ext_func1@plt 0 0 ext_func2@plt 1 1 ext_func3@plt 2 2 normal_ifunc1@plt 3 3 normal_ifunc2@plt 4 4 hidden_ifunc1@plt 5 None: it's in .rela.got hidden_ifunc2@plt 6 None: it's in .rela.got local_ifunc@plt 7 None: it's in .rela.got Now normal_ifuncs first. */ elf_link_hash_traverse (&htab->elf, elfNN_allocate_ifunc_dynrelocs_ref_global, info); /* Next hidden_ifuncs follows. */ elf_link_hash_traverse (&htab->elf, elfNN_allocate_ifunc_dynrelocs_ref_local, info); /* Finally local_ifuncs. */ htab_traverse (htab->loc_hash_table, elfNN_allocate_local_ifunc_dynrelocs, info); /* Don't allocate .got.plt section if there are no PLT. */ if (htab->elf.sgotplt && htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE && (htab->elf.splt == NULL || htab->elf.splt->size == 0)) htab->elf.sgotplt->size = 0; if (info->enable_dt_relr && !bfd_link_relocatable (info)) { elf_link_hash_traverse (&htab->elf, record_relr_dyn_got_relocs, info); for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) { if (!is_loongarch_elf (ibfd)) continue; for (s = ibfd->sections; s != NULL; s = s->next) if (!record_relr_non_got_relocs (ibfd, info, s)) return false; if (!record_relr_local_got_relocs (ibfd, info)) return false; } } /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->elf.splt || s == htab->elf.iplt || s == htab->elf.sgot || s == htab->elf.sgotplt || s == htab->elf.igotplt || s == htab->elf.sdynbss || s == htab->elf.sdynrelro) { /* Strip this section if we don't need it; see the comment below. */ } else if (strncmp (s->name, ".rela", 5) == 0) { if (s->size != 0) { /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (s == htab->elf.srelrdyn && htab->relr_count == 0) { /* Remove .relr.dyn based on relr_count, not size, since it is not sized yet. */ s->flags |= SEC_EXCLUDE; /* Allocate contents later. */ continue; } else { /* It's not one of our sections. */ continue; } if (s->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. Zero the memory for the benefit of .rela.plt, which has 4 unused entries at the beginning, and we don't want garbage. */ s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return false; } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in loongarch_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ #define add_dynamic_entry(TAG, VAL) _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (bfd_link_executable (info)) { if (!add_dynamic_entry (DT_DEBUG, 0)) return false; } if (htab->elf.srelplt->size != 0) { if (!add_dynamic_entry (DT_PLTGOT, 0) || !add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return false; } if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) return false; /* If any dynamic relocs apply to a read-only section, then we need a DT_TEXTREL entry. */ if ((info->flags & DF_TEXTREL) == 0) elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info); if (info->flags & DF_TEXTREL) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return false; /* Clear the DF_TEXTREL flag. It will be set again if we write out an actual text relocation; we may not, because at this point we do not know whether e.g. any .eh_frame absolute relocations have been converted to PC-relative. */ info->flags &= ~DF_TEXTREL; } } #undef add_dynamic_entry return true; } #define LARCH_LD_STACK_DEPTH 16 static int64_t larch_opc_stack[LARCH_LD_STACK_DEPTH]; static size_t larch_stack_top = 0; static bfd_reloc_status_type loongarch_push (int64_t val) { if (LARCH_LD_STACK_DEPTH <= larch_stack_top) return bfd_reloc_outofrange; larch_opc_stack[larch_stack_top++] = val; return bfd_reloc_ok; } static bfd_reloc_status_type loongarch_pop (int64_t *val) { if (larch_stack_top == 0) return bfd_reloc_outofrange; BFD_ASSERT (val); *val = larch_opc_stack[--larch_stack_top]; return bfd_reloc_ok; } static bfd_reloc_status_type loongarch_top (int64_t *val) { if (larch_stack_top == 0) return bfd_reloc_outofrange; BFD_ASSERT (val); *val = larch_opc_stack[larch_stack_top - 1]; return bfd_reloc_ok; } static void loongarch_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) { BFD_ASSERT (s && s->contents); const struct elf_backend_data *bed; bfd_byte *loc; bed = get_elf_backend_data (abfd); if (!(s->size > s->reloc_count * bed->s->sizeof_rela)) BFD_ASSERT (s->size > s->reloc_count * bed->s->sizeof_rela); loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); bed->s->swap_reloca_out (abfd, rel, loc); } /* Check rel->r_offset in range of contents. */ static bfd_reloc_status_type loongarch_check_offset (const Elf_Internal_Rela *rel, const asection *input_section) { if (0 == strcmp(input_section->name, ".text") && rel->r_offset > input_section->size) return bfd_reloc_overflow; return bfd_reloc_ok; } #define LARCH_RELOC_PERFORM_3OP(op1, op2, op3) \ ({ \ bfd_reloc_status_type ret = loongarch_pop (&op2); \ if (ret == bfd_reloc_ok) \ { \ ret = loongarch_pop (&op1); \ if (ret == bfd_reloc_ok) \ ret = loongarch_push (op3); \ } \ ret; \ }) /* Write immediate to instructions. */ static bfd_reloc_status_type loongarch_reloc_rewrite_imm_insn (const Elf_Internal_Rela *rel, const asection *input_section ATTRIBUTE_UNUSED, reloc_howto_type *howto, bfd *input_bfd, bfd_byte *contents, bfd_vma reloc_val) { /* Adjust the immediate based on alignment and its position in the instruction. */ if (!loongarch_adjust_reloc_bitsfield (input_bfd, howto, &reloc_val)) return bfd_reloc_overflow; int bits = bfd_get_reloc_size (howto) * 8; uint64_t insn = bfd_get (bits, input_bfd, contents + rel->r_offset); /* Write immediate to instruction. */ insn = (insn & ~howto->dst_mask) | (reloc_val & howto->dst_mask); bfd_put (bits, input_bfd, insn, contents + rel->r_offset); return bfd_reloc_ok; } static bfd_reloc_status_type perform_relocation (const Elf_Internal_Rela *rel, asection *input_section, reloc_howto_type *howto, bfd_vma value, bfd *input_bfd, bfd_byte *contents) { int64_t opr1, opr2, opr3; bfd_reloc_status_type r = bfd_reloc_ok; int bits = bfd_get_reloc_size (howto) * 8; switch (ELFNN_R_TYPE (rel->r_info)) { case R_LARCH_SOP_PUSH_PCREL: case R_LARCH_SOP_PUSH_ABSOLUTE: case R_LARCH_SOP_PUSH_GPREL: case R_LARCH_SOP_PUSH_TLS_TPREL: case R_LARCH_SOP_PUSH_TLS_GOT: case R_LARCH_SOP_PUSH_TLS_GD: case R_LARCH_SOP_PUSH_PLT_PCREL: r = loongarch_push (value); break; case R_LARCH_SOP_PUSH_DUP: r = loongarch_pop (&opr1); if (r == bfd_reloc_ok) { r = loongarch_push (opr1); if (r == bfd_reloc_ok) r = loongarch_push (opr1); } break; case R_LARCH_SOP_ASSERT: r = loongarch_pop (&opr1); if (r != bfd_reloc_ok || !opr1) r = bfd_reloc_notsupported; break; case R_LARCH_SOP_NOT: r = loongarch_pop (&opr1); if (r == bfd_reloc_ok) r = loongarch_push (!opr1); break; case R_LARCH_SOP_SUB: r = LARCH_RELOC_PERFORM_3OP (opr1, opr2, opr1 - opr2); break; case R_LARCH_SOP_SL: r = LARCH_RELOC_PERFORM_3OP (opr1, opr2, opr1 << opr2); break; case R_LARCH_SOP_SR: r = LARCH_RELOC_PERFORM_3OP (opr1, opr2, opr1 >> opr2); break; case R_LARCH_SOP_AND: r = LARCH_RELOC_PERFORM_3OP (opr1, opr2, opr1 & opr2); break; case R_LARCH_SOP_ADD: r = LARCH_RELOC_PERFORM_3OP (opr1, opr2, opr1 + opr2); break; case R_LARCH_SOP_IF_ELSE: r = loongarch_pop (&opr3); if (r == bfd_reloc_ok) { r = loongarch_pop (&opr2); if (r == bfd_reloc_ok) { r = loongarch_pop (&opr1); if (r == bfd_reloc_ok) r = loongarch_push (opr1 ? opr2 : opr3); } } break; case R_LARCH_SOP_POP_32_S_10_5: case R_LARCH_SOP_POP_32_S_10_12: case R_LARCH_SOP_POP_32_S_10_16: case R_LARCH_SOP_POP_32_S_10_16_S2: case R_LARCH_SOP_POP_32_S_0_5_10_16_S2: case R_LARCH_SOP_POP_32_S_0_10_10_16_S2: case R_LARCH_SOP_POP_32_S_5_20: case R_LARCH_SOP_POP_32_U_10_12: case R_LARCH_SOP_POP_32_U: r = loongarch_pop (&opr1); if (r != bfd_reloc_ok) break; r = loongarch_check_offset (rel, input_section); if (r != bfd_reloc_ok) break; r = loongarch_reloc_rewrite_imm_insn (rel, input_section, howto, input_bfd, contents, (bfd_vma)opr1); break; case R_LARCH_TLS_DTPREL32: case R_LARCH_32: case R_LARCH_TLS_DTPREL64: case R_LARCH_64: r = loongarch_check_offset (rel, input_section); if (r != bfd_reloc_ok) break; bfd_put (bits, input_bfd, value, contents + rel->r_offset); break; /* LoongArch only has add/sub reloc pair, not has set/sub reloc pair. Because set/sub reloc pair not support multi-thread. While add/sub reloc pair process order not affect the final result. For add/sub reloc, the original value will be involved in the calculation. In order not to add/sub extra value, we write 0 to symbol address at assembly time. add/sub reloc bits determined by the value after symbol subtraction, not symbol value. add/sub reloc save part of the symbol value, so we only need to save howto->dst_mask bits. */ case R_LARCH_ADD6: case R_LARCH_SUB6: { bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); word = (word & ~howto->dst_mask) | (value & howto->dst_mask); bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); r = bfd_reloc_ok; break; } /* Not need to read the original value, just write the new value. */ case R_LARCH_ADD8: case R_LARCH_ADD16: case R_LARCH_ADD24: case R_LARCH_ADD32: case R_LARCH_ADD64: case R_LARCH_SUB8: case R_LARCH_SUB16: case R_LARCH_SUB24: case R_LARCH_SUB32: case R_LARCH_SUB64: { /* Because add/sub reloc is processed separately, so the high bits is invalid. */ bfd_vma word = value & howto->dst_mask; bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); r = bfd_reloc_ok; break; } case R_LARCH_ADD_ULEB128: case R_LARCH_SUB_ULEB128: { unsigned int len = 0; /* Before write uleb128, first read it to get it's length. */ _bfd_read_unsigned_leb128 (input_bfd, contents + rel->r_offset, &len); loongarch_write_unsigned_leb128 (contents + rel->r_offset, len, value); r = bfd_reloc_ok; break; } /* For eh_frame and debug info. */ case R_LARCH_32_PCREL: case R_LARCH_64_PCREL: { value -= sec_addr (input_section) + rel->r_offset; value += rel->r_addend; bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); word = (word & ~howto->dst_mask) | (value & howto->dst_mask); bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); r = bfd_reloc_ok; break; } /* New reloc type. R_LARCH_B16 ~ R_LARCH_TLS_GD_HI20. */ case R_LARCH_B16: case R_LARCH_B21: case R_LARCH_B26: case R_LARCH_ABS_HI20: case R_LARCH_ABS_LO12: case R_LARCH_ABS64_LO20: case R_LARCH_ABS64_HI12: case R_LARCH_PCALA_HI20: case R_LARCH_PCALA_LO12: case R_LARCH_PCALA64_LO20: case R_LARCH_PCALA64_HI12: case R_LARCH_GOT_PC_HI20: case R_LARCH_GOT_PC_LO12: case R_LARCH_GOT64_PC_LO20: case R_LARCH_GOT64_PC_HI12: case R_LARCH_GOT_HI20: case R_LARCH_GOT_LO12: case R_LARCH_GOT64_LO20: case R_LARCH_GOT64_HI12: case R_LARCH_TLS_LE_HI20: case R_LARCH_TLS_LE_LO12: case R_LARCH_TLS_LE_HI20_R: case R_LARCH_TLS_LE_LO12_R: case R_LARCH_TLS_LE64_LO20: case R_LARCH_TLS_LE64_HI12: case R_LARCH_TLS_IE_PC_HI20: case R_LARCH_TLS_IE_PC_LO12: case R_LARCH_TLS_IE64_PC_LO20: case R_LARCH_TLS_IE64_PC_HI12: case R_LARCH_TLS_IE_HI20: case R_LARCH_TLS_IE_LO12: case R_LARCH_TLS_IE64_LO20: case R_LARCH_TLS_IE64_HI12: case R_LARCH_TLS_LD_PC_HI20: case R_LARCH_TLS_LD_HI20: case R_LARCH_TLS_GD_PC_HI20: case R_LARCH_TLS_GD_HI20: case R_LARCH_PCREL20_S2: case R_LARCH_CALL36: case R_LARCH_TLS_DESC_PC_HI20: case R_LARCH_TLS_DESC_PC_LO12: case R_LARCH_TLS_DESC64_PC_LO20: case R_LARCH_TLS_DESC64_PC_HI12: case R_LARCH_TLS_DESC_HI20: case R_LARCH_TLS_DESC_LO12: case R_LARCH_TLS_DESC64_LO20: case R_LARCH_TLS_DESC64_HI12: case R_LARCH_TLS_LD_PCREL20_S2: case R_LARCH_TLS_GD_PCREL20_S2: case R_LARCH_TLS_DESC_PCREL20_S2: r = loongarch_check_offset (rel, input_section); if (r != bfd_reloc_ok) break; r = loongarch_reloc_rewrite_imm_insn (rel, input_section, howto, input_bfd, contents, value); break; case R_LARCH_TLS_DESC_LD: case R_LARCH_TLS_DESC_CALL: r = bfd_reloc_ok; break; case R_LARCH_RELAX: case R_LARCH_TLS_LE_ADD_R: break; default: r = bfd_reloc_notsupported; } return r; } #define LARCH_RECENT_RELOC_QUEUE_LENGTH 72 static struct { bfd *bfd; asection *section; bfd_vma r_offset; int r_type; bfd_vma relocation; Elf_Internal_Sym *sym; struct elf_link_hash_entry *h; bfd_vma addend; int64_t top_then; } larch_reloc_queue[LARCH_RECENT_RELOC_QUEUE_LENGTH]; static size_t larch_reloc_queue_head = 0; static size_t larch_reloc_queue_tail = 0; static const char * loongarch_sym_name (bfd *input_bfd, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { const char *ret = NULL; if (sym) ret = bfd_elf_string_from_elf_section (input_bfd, elf_symtab_hdr (input_bfd).sh_link, sym->st_name); else if (h) ret = h->root.root.string; if (ret == NULL || *ret == '\0') ret = ""; return ret; } static void loongarch_record_one_reloc (bfd *abfd, asection *section, int r_type, bfd_vma r_offset, Elf_Internal_Sym *sym, struct elf_link_hash_entry *h, bfd_vma addend) { if ((larch_reloc_queue_head == 0 && larch_reloc_queue_tail == LARCH_RECENT_RELOC_QUEUE_LENGTH - 1) || larch_reloc_queue_head == larch_reloc_queue_tail + 1) larch_reloc_queue_head = (larch_reloc_queue_head + 1) % LARCH_RECENT_RELOC_QUEUE_LENGTH; larch_reloc_queue[larch_reloc_queue_tail].bfd = abfd; larch_reloc_queue[larch_reloc_queue_tail].section = section; larch_reloc_queue[larch_reloc_queue_tail].r_offset = r_offset; larch_reloc_queue[larch_reloc_queue_tail].r_type = r_type; larch_reloc_queue[larch_reloc_queue_tail].sym = sym; larch_reloc_queue[larch_reloc_queue_tail].h = h; larch_reloc_queue[larch_reloc_queue_tail].addend = addend; loongarch_top (&larch_reloc_queue[larch_reloc_queue_tail].top_then); larch_reloc_queue_tail = (larch_reloc_queue_tail + 1) % LARCH_RECENT_RELOC_QUEUE_LENGTH; } static void loongarch_dump_reloc_record (void (*p) (const char *fmt, ...)) { size_t i = larch_reloc_queue_head; bfd *a_bfd = NULL; asection *section = NULL; bfd_vma r_offset = 0; int inited = 0; p ("Dump relocate record:\n"); p ("stack top\t\trelocation name\t\tsymbol"); while (i != larch_reloc_queue_tail) { if (a_bfd != larch_reloc_queue[i].bfd || section != larch_reloc_queue[i].section || r_offset != larch_reloc_queue[i].r_offset) { a_bfd = larch_reloc_queue[i].bfd; section = larch_reloc_queue[i].section; r_offset = larch_reloc_queue[i].r_offset; p ("\nat %pB(%pA+0x%v):\n", larch_reloc_queue[i].bfd, larch_reloc_queue[i].section, larch_reloc_queue[i].r_offset); } if (!inited) inited = 1, p ("...\n"); reloc_howto_type *howto = loongarch_elf_rtype_to_howto (larch_reloc_queue[i].bfd, larch_reloc_queue[i].r_type); p ("0x%V %s\t`%s'", (bfd_vma) larch_reloc_queue[i].top_then, howto ? howto->name : "", loongarch_sym_name (larch_reloc_queue[i].bfd, larch_reloc_queue[i].h, larch_reloc_queue[i].sym)); long addend = larch_reloc_queue[i].addend; if (addend < 0) p (" - %ld", -addend); else if (0 < addend) p (" + %ld(0x%v)", addend, larch_reloc_queue[i].addend); p ("\n"); i = (i + 1) % LARCH_RECENT_RELOC_QUEUE_LENGTH; } p ("\n" "-- Record dump end --\n\n"); } static bool loongarch_reloc_is_fatal (struct bfd_link_info *info, bfd *input_bfd, asection *input_section, Elf_Internal_Rela *rel, reloc_howto_type *howto, bfd_reloc_status_type rtype, bool is_undefweak, const char *name, const char *msg) { bool fatal = true; switch (rtype) { /* 'dangerous' means we do it but can't promise it's ok 'unsupport' means out of ability of relocation type 'undefined' means we can't deal with the undefined symbol. */ case bfd_reloc_undefined: info->callbacks->undefined_symbol (info, name, input_bfd, input_section, rel->r_offset, true); info->callbacks->info ("%X%pB(%pA+0x%v): error: %s against %s`%s':\n%s\n", input_bfd, input_section, rel->r_offset, howto->name, is_undefweak ? "[undefweak] " : "", name, msg); break; case bfd_reloc_dangerous: info->callbacks->info ("%pB(%pA+0x%v): warning: %s against %s`%s':\n%s\n", input_bfd, input_section, rel->r_offset, howto->name, is_undefweak ? "[undefweak] " : "", name, msg); fatal = false; break; case bfd_reloc_notsupported: info->callbacks->info ("%X%pB(%pA+0x%v): error: %s against %s`%s':\n%s\n", input_bfd, input_section, rel->r_offset, howto->name, is_undefweak ? "[undefweak] " : "", name, msg); break; default: break; } return fatal; } /* If lo12 immediate > 0x7ff, because sign-extend caused by addi.d/ld.d, hi20 immediate need to add 0x1. For example: pc 0x120000000, symbol 0x120000812 lo12 immediate is 0x812, 0x120000812 & 0xfff = 0x812 hi20 immediate is 1, because lo12 imm > 0x7ff, symbol need to add 0x1000 (((0x120000812 + 0x1000) & ~0xfff) - (0x120000000 & ~0xfff)) >> 12 = 0x1 At run: pcalau12i $t0, hi20 (0x1) $t0 = 0x120000000 + (0x1 << 12) = 0x120001000 addi.d $t0, $t0, lo12 (0x812) $t0 = 0x120001000 + 0xfffffffffffff812 (-(0x1000 - 0x812) = -0x7ee) = 0x120001000 - 0x7ee (0x1000 - 0x7ee = 0x812) = 0x120000812 Without hi20 add 0x1000, the result 0x120000000 - 0x7ee = 0x11ffff812 is error. 0x1000 + sign-extend-to64(0x8xx) = 0x8xx. */ #define RELOCATE_CALC_PC32_HI20(relocation, pc) \ ({ \ bfd_vma __lo = (relocation) & ((bfd_vma)0xfff); \ relocation = (relocation & ~(bfd_vma)0xfff) \ - (pc & ~(bfd_vma)0xfff); \ if (__lo > 0x7ff) \ relocation += 0x1000; \ }) /* Handle problems caused by symbol extensions in TLS LE, The processing is similar to the macro RELOCATE_CALC_PC32_HI20 method. */ #define RELOCATE_TLS_TP32_HI20(relocation) \ ({ \ bfd_vma __lo = (relocation) & ((bfd_vma)0xfff); \ if (__lo > 0x7ff) \ relocation += 0x800; \ relocation = relocation & ~(bfd_vma)0xfff; \ }) /* For example: pc is 0x11000010000100, symbol is 0x1812348ffff812 offset = (0x1812348ffff812 & ~0xfff) - (0x11000010000100 & ~0xfff) = 0x712347ffff000 lo12: 0x1812348ffff812 & 0xfff = 0x812 hi20: 0x7ffff + 0x1(lo12 > 0x7ff) = 0x80000 lo20: 0x71234 - 0x1(lo12 > 0x7ff) + 0x1(hi20 > 0x7ffff) hi12: 0x0 pcalau12i $t1, hi20 (0x80000) $t1 = 0x11000010000100 + sign-extend(0x80000 << 12) = 0x11000010000100 + 0xffffffff80000000 = 0x10ffff90000000 addi.d $t0, $zero, lo12 (0x812) $t0 = 0xfffffffffffff812 (if lo12 > 0x7ff, because sign-extend, lo20 need to sub 0x1) lu32i.d $t0, lo20 (0x71234) $t0 = {0x71234, 0xfffff812} = 0x71234fffff812 lu52i.d $t0, hi12 (0x0) $t0 = {0x0, 0x71234fffff812} = 0x71234fffff812 add.d $t1, $t1, $t0 $t1 = 0x10ffff90000000 + 0x71234fffff812 = 0x1812348ffff812. */ #define RELOCATE_CALC_PC64_HI32(relocation, pc) \ ({ \ bfd_vma __lo = (relocation & (bfd_vma)0xfff); \ relocation = (relocation & ~(bfd_vma)0xfff) \ - ((pc) & ~(bfd_vma)0xfff); \ if (__lo > 0x7ff) \ relocation += (0x1000 - 0x100000000); \ if (relocation & 0x80000000) \ relocation += 0x100000000; \ }) /* Compute the tp/dtp offset of a tls symbol. It is dtp offset in dynamic tls model (gd/ld) and tp offset in static tls model (ie/le). Both offsets are calculated the same way on LoongArch, so the same function is used. */ static bfd_vma tlsoff (struct bfd_link_info *info, bfd_vma addr) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return addr - elf_hash_table (info)->tls_sec->vma; } static int loongarch_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; bool fatal = false; asection *sreloc = elf_section_data (input_section)->sreloc; struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); bool is_pic = bfd_link_pic (info); bool is_dyn = elf_hash_table (info)->dynamic_sections_created; asection *plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; asection *got = htab->elf.sgot; relend = relocs + input_section->reloc_count; for (rel = relocs; rel < relend; rel++) { unsigned int r_type = ELFNN_R_TYPE (rel->r_info); unsigned long r_symndx = ELFNN_R_SYM (rel->r_info); bfd_vma pc = sec_addr (input_section) + rel->r_offset; reloc_howto_type *howto = NULL; asection *sec = NULL; Elf_Internal_Sym *sym = NULL; struct elf_link_hash_entry *h = NULL; const char *name; bfd_reloc_status_type r = bfd_reloc_ok; bool is_ie, is_desc, is_undefweak, unresolved_reloc, defined_local; bool resolved_local, resolved_dynly, resolved_to_const; char tls_type; bfd_vma relocation, off, ie_off, desc_off; int i, j; /* When an unrecognized relocation is encountered, which usually occurs when using a newer assembler but an older linker, an error should be reported instead of continuing to the next relocation. */ howto = loongarch_elf_rtype_to_howto (input_bfd, r_type); if (howto == NULL) return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); if (r_type == R_LARCH_GNU_VTINHERIT || r_type == R_LARCH_GNU_VTENTRY) continue; /* This is a final link. */ if (r_symndx < symtab_hdr->sh_info) { is_undefweak = false; unresolved_reloc = false; sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); /* Relocate against local STT_GNU_IFUNC symbol. */ if (!bfd_link_relocatable (info) && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) { h = elfNN_loongarch_get_local_sym_hash (htab, input_bfd, rel, false); if (h == NULL) abort (); /* Set STT_GNU_IFUNC symbol value. */ h->root.u.def.value = sym->st_value; h->root.u.def.section = sec; } defined_local = true; resolved_local = true; resolved_dynly = false; resolved_to_const = false; /* Calc in funtion elf_link_input_bfd, * if #define elf_backend_rela_normal to 1. */ if (bfd_link_relocatable (info) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) continue; } else { bool warned, ignored; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); /* Here means symbol isn't local symbol only and 'h != NULL'. */ /* The 'unresolved_syms_in_objects' specify how to deal with undefined symbol. And 'dynamic_undefined_weak' specify what to do when meeting undefweak. */ if ((is_undefweak = h->root.type == bfd_link_hash_undefweak)) { defined_local = false; resolved_local = false; resolved_to_const = (!is_dyn || h->dynindx == -1 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); resolved_dynly = !resolved_local && !resolved_to_const; } else if (warned) { /* Symbol undefined offen means failed already. I don't know why 'warned' here but I guess it want to continue relocating as if no error occures to find other errors as more as possible. */ /* To avoid generating warning messages about truncated relocations, set the relocation's address to be the same as the start of this section. */ relocation = (input_section->output_section ? input_section->output_section->vma : 0); defined_local = relocation != 0; resolved_local = defined_local; resolved_to_const = !resolved_local; resolved_dynly = false; } else { defined_local = !unresolved_reloc && !ignored; resolved_local = defined_local && LARCH_REF_LOCAL (info, h); resolved_dynly = !resolved_local; resolved_to_const = !resolved_local && !resolved_dynly; } } name = loongarch_sym_name (input_bfd, h, sym); if (sec != NULL && discarded_section (sec)) RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, rel, 1, relend, howto, 0, contents); if (bfd_link_relocatable (info)) continue; /* The r_symndx will be STN_UNDEF (zero) only for relocs against symbols from removed linkonce sections, or sections discarded by a linker script. Also for R_*_SOP_PUSH_ABSOLUTE and PCREL to specify const. */ if (r_symndx == STN_UNDEF) { defined_local = false; resolved_local = false; resolved_dynly = false; resolved_to_const = true; } /* The ifunc reference generate plt. */ if (h && h->type == STT_GNU_IFUNC && h->plt.offset != MINUS_ONE) { defined_local = true; resolved_local = true; resolved_dynly = false; resolved_to_const = false; relocation = sec_addr (plt) + h->plt.offset; } unresolved_reloc = resolved_dynly; BFD_ASSERT (resolved_local + resolved_dynly + resolved_to_const == 1); /* BFD_ASSERT (!resolved_dynly || (h && h->dynindx != -1));. */ BFD_ASSERT (!resolved_local || defined_local); is_desc = false; is_ie = false; switch (r_type) { case R_LARCH_MARK_PCREL: case R_LARCH_MARK_LA: case R_LARCH_NONE: r = bfd_reloc_continue; unresolved_reloc = false; break; case R_LARCH_32: case R_LARCH_64: if (resolved_dynly || (is_pic && resolved_local)) { Elf_Internal_Rela outrel; /* When generating a shared object, these relocations are copied into the output file to be resolved at run time. */ outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); unresolved_reloc = (!((bfd_vma) -2 <= outrel.r_offset) && (input_section->flags & SEC_ALLOC)); outrel.r_offset += sec_addr (input_section); /* A pointer point to a ifunc symbol. */ if (h && h->type == STT_GNU_IFUNC) { if (h->dynindx == -1) { outrel.r_info = ELFNN_R_INFO (0, R_LARCH_IRELATIVE); outrel.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); } else { outrel.r_info = ELFNN_R_INFO (h->dynindx, R_LARCH_NN); outrel.r_addend = 0; } if (LARCH_REF_LOCAL (info, h)) { if (htab->elf.splt != NULL) sreloc = htab->elf.srelgot; else sreloc = htab->elf.irelplt; } else { if (bfd_link_pic (info)) sreloc = htab->elf.irelifunc; else if (htab->elf.splt != NULL) sreloc = htab->elf.srelgot; else sreloc = htab->elf.irelplt; } } else if (resolved_dynly) { if (h->dynindx == -1) outrel.r_info = ELFNN_R_INFO (0, r_type); else outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); outrel.r_addend = rel->r_addend; } else { outrel.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); outrel.r_addend = relocation + rel->r_addend; } /* No alloc space of func allocate_dynrelocs. No alloc space of invalid R_LARCH_32 in ELFCLASS64. */ if (unresolved_reloc && (ARCH_SIZE == 32 || r_type != R_LARCH_32) && !(h && (h->is_weakalias || !h->dyn_relocs))) { if (info->enable_dt_relr && (ELFNN_R_TYPE (outrel.r_info) == R_LARCH_RELATIVE) && input_section->alignment_power != 0 && rel->r_offset % 2 == 0) /* Don't emit a relative relocation that is packed, only apply the addend (as if we are applying the original R_LARCH_NN reloc in a PDE). */ r = perform_relocation (rel, input_section, howto, relocation, input_bfd, contents); else loongarch_elf_append_rela (output_bfd, sreloc, &outrel); } } relocation += rel->r_addend; break; case R_LARCH_ADD6: case R_LARCH_ADD8: case R_LARCH_ADD16: case R_LARCH_ADD24: case R_LARCH_ADD32: case R_LARCH_ADD64: { bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); relocation = old_value + relocation + rel->r_addend; break; } case R_LARCH_SUB6: case R_LARCH_SUB8: case R_LARCH_SUB16: case R_LARCH_SUB24: case R_LARCH_SUB32: case R_LARCH_SUB64: { bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); relocation = old_value - relocation - rel->r_addend; break; } case R_LARCH_ADD_ULEB128: case R_LARCH_SUB_ULEB128: { /* Get the value and length of the uleb128 data. */ unsigned int len = 0; bfd_vma old_value = _bfd_read_unsigned_leb128 (input_bfd, contents + rel->r_offset, &len); if (R_LARCH_ADD_ULEB128 == ELFNN_R_TYPE (rel->r_info)) relocation = old_value + relocation + rel->r_addend; else if (R_LARCH_SUB_ULEB128 == ELFNN_R_TYPE (rel->r_info)) relocation = old_value - relocation - rel->r_addend; bfd_vma mask = (1 << (7 * len)) - 1; relocation &= mask; break; } case R_LARCH_TLS_DTPREL32: case R_LARCH_TLS_DTPREL64: if (resolved_dynly) { Elf_Internal_Rela outrel; outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); unresolved_reloc = (!((bfd_vma) -2 <= outrel.r_offset) && (input_section->flags & SEC_ALLOC)); outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); outrel.r_offset += sec_addr (input_section); outrel.r_addend = rel->r_addend; if (unresolved_reloc) loongarch_elf_append_rela (output_bfd, sreloc, &outrel); break; } if (resolved_to_const) fatal = loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal:"); if (resolved_local) { if (!elf_hash_table (info)->tls_sec) { fatal = loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "TLS section not be created"); } else relocation = tlsoff (info, relocation); } else { fatal = loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_undefined, is_undefweak, name, "TLS LE just can be resolved local only."); } break; case R_LARCH_SOP_PUSH_TLS_TPREL: if (resolved_local) { if (!elf_hash_table (info)->tls_sec) fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "TLS section not be created")); else relocation = tlsoff (info, relocation); } else fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_undefined, is_undefweak, name, "TLS LE just can be resolved local only.")); break; case R_LARCH_SOP_PUSH_ABSOLUTE: if (is_undefweak) { if (resolved_dynly) fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_dangerous, is_undefweak, name, "Someone require us to resolve undefweak " "symbol dynamically. \n" "But this reloc can't be done. " "I think I can't throw error " "for this\n" "so I resolved it to 0. " "I suggest to re-compile with '-fpic'.")); relocation = 0; unresolved_reloc = false; break; } if (resolved_to_const) { relocation += rel->r_addend; break; } if (is_pic) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Under PIC we don't know load address. Re-compile " "with '-fpic'?")); break; } if (resolved_dynly) { if (!(plt && h && h->plt.offset != MINUS_ONE)) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_undefined, is_undefweak, name, "Can't be resolved dynamically. Try to re-compile " "with '-fpic'?")); break; } if (rel->r_addend != 0) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Shouldn't be with r_addend.")); break; } relocation = sec_addr (plt) + h->plt.offset; unresolved_reloc = false; break; } if (resolved_local) { relocation += rel->r_addend; break; } break; case R_LARCH_SOP_PUSH_PCREL: case R_LARCH_SOP_PUSH_PLT_PCREL: unresolved_reloc = false; if (is_undefweak) { i = 0, j = 0; relocation = 0; if (resolved_dynly) { if (h && h->plt.offset != MINUS_ONE) i = 1, j = 2; else fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_dangerous, is_undefweak, name, "Undefweak need to be resolved dynamically, " "but PLT stub doesn't represent.")); } } else { if (!(defined_local || (h && h->plt.offset != MINUS_ONE))) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_undefined, is_undefweak, name, "PLT stub does not represent and " "symbol not defined.")); break; } if (resolved_local) i = 0, j = 2; else /* if (resolved_dynly) */ { if (!(h && h->plt.offset != MINUS_ONE)) fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_dangerous, is_undefweak, name, "Internal: PLT stub doesn't represent. " "Resolve it with pcrel")); i = 1, j = 3; } } for (; i < j; i++) { if ((i & 1) == 0 && defined_local) { relocation -= pc; relocation += rel->r_addend; break; } if ((i & 1) && h && h->plt.offset != MINUS_ONE) { if (rel->r_addend != 0) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "PLT shouldn't be with r_addend.")); break; } relocation = sec_addr (plt) + h->plt.offset - pc; break; } } break; case R_LARCH_SOP_PUSH_GPREL: unresolved_reloc = false; if (rel->r_addend != 0) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Shouldn't be with r_addend.")); break; } if (h != NULL) { off = h->got.offset & (~1); if (h->got.offset == MINUS_ONE && h->type != STT_GNU_IFUNC) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal: GOT entry doesn't represent.")); break; } /* Hidden symbol not has .got entry, only .got.plt entry so gprel is (plt - got). */ if (h->got.offset == MINUS_ONE && h->type == STT_GNU_IFUNC) { if (h->plt.offset == (bfd_vma) -1) { abort(); } bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE; off = plt_index * GOT_ENTRY_SIZE; if (htab->elf.splt != NULL) { /* Section .plt header is 2 times of plt entry. */ off = sec_addr (htab->elf.sgotplt) + off - sec_addr (htab->elf.sgot); } else { /* Section iplt not has plt header. */ off = sec_addr (htab->elf.igotplt) + off - sec_addr (htab->elf.sgot); } } if ((h->got.offset & 1) == 0) { if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (is_dyn, bfd_link_pic (info), h) && ((bfd_link_pic (info) && LARCH_REF_LOCAL (info, h)))) { /* This is actually a static link, or it is a -Bsymbolic link and the symbol is defined locally, or the symbol was forced to be local because of a version file. We must initialize this entry in the global offset table. Since the offset must always be a multiple of the word size, we use the least significant bit to record whether we have initialized it already. When doing a dynamic link, we create a rela.got relocation entry to initialize the value. This is done in the finish_dynamic_symbol routine. */ if (resolved_dynly) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_dangerous, is_undefweak, name, "Internal: here shouldn't dynamic.")); } if (!(defined_local || resolved_to_const)) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_undefined, is_undefweak, name, "Internal: ")); break; } asection *s; Elf_Internal_Rela outrel; /* We need to generate a R_LARCH_RELATIVE reloc for the dynamic linker. */ s = htab->elf.srelgot; if (!s) { fatal = loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal: '.rel.got' not represent"); break; } outrel.r_offset = sec_addr (got) + off; outrel.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); outrel.r_addend = relocation; /* Link-time addr. */ loongarch_elf_append_rela (output_bfd, s, &outrel); } bfd_put_NN (output_bfd, relocation, got->contents + off); h->got.offset |= 1; } } else { if (!local_got_offsets) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal: local got offsets not reporesent.")); break; } off = local_got_offsets[r_symndx] & (~1); if (local_got_offsets[r_symndx] == MINUS_ONE) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal: GOT entry doesn't represent.")); break; } /* The offset must always be a multiple of the word size. So, we can use the least significant bit to record whether we have already processed this entry. */ if ((local_got_offsets[r_symndx] & 1) == 0) { if (is_pic) { asection *s; Elf_Internal_Rela outrel; /* We need to generate a R_LARCH_RELATIVE reloc for the dynamic linker. */ s = htab->elf.srelgot; if (!s) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_notsupported, is_undefweak, name, "Internal: '.rel.got' not represent")); break; } outrel.r_offset = sec_addr (got) + off; outrel.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); outrel.r_addend = relocation; /* Link-time addr. */ loongarch_elf_append_rela (output_bfd, s, &outrel); } bfd_put_NN (output_bfd, relocation, got->contents + off); local_got_offsets[r_symndx] |= 1; } } relocation = off; break; case R_LARCH_SOP_PUSH_TLS_GOT: case R_LARCH_SOP_PUSH_TLS_GD: { unresolved_reloc = false; if (r_type == R_LARCH_SOP_PUSH_TLS_GOT) is_ie = true; bfd_vma got_off = 0; if (h != NULL) { got_off = h->got.offset; h->got.offset |= 1; } else { got_off = local_got_offsets[r_symndx]; local_got_offsets[r_symndx] |= 1; } BFD_ASSERT (got_off != MINUS_ONE); ie_off = 0; tls_type = _bfd_loongarch_elf_tls_type (input_bfd, h, r_symndx); if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) ie_off = 2 * GOT_ENTRY_SIZE; if ((got_off & 1) == 0) { Elf_Internal_Rela rela; asection *srel = htab->elf.srelgot; int indx = 0; bool need_reloc = false; LARCH_TLS_GD_IE_NEED_DYN_RELOC (info, is_dyn, h, indx, need_reloc); if (tls_type & GOT_TLS_GD) { if (need_reloc) { /* Dynamic resolved Module ID. */ rela.r_offset = sec_addr (got) + got_off; rela.r_addend = 0; rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_DTPMODNN); bfd_put_NN (output_bfd, 0, got->contents + got_off); loongarch_elf_append_rela (output_bfd, srel, &rela); if (indx == 0) { /* Local symbol, tp offset has been known. */ BFD_ASSERT (! unresolved_reloc); bfd_put_NN (output_bfd, tlsoff (info, relocation), (got->contents + got_off + GOT_ENTRY_SIZE)); } else { /* Dynamic resolved block offset. */ bfd_put_NN (output_bfd, 0, got->contents + got_off + GOT_ENTRY_SIZE); rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_DTPRELNN); rela.r_offset += GOT_ENTRY_SIZE; loongarch_elf_append_rela (output_bfd, srel, &rela); } } else { /* In a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1. */ bfd_put_NN (output_bfd, 1, got->contents + got_off); bfd_put_NN (output_bfd, tlsoff (info, relocation), got->contents + got_off + GOT_ENTRY_SIZE); } } if (tls_type & GOT_TLS_IE) { if (need_reloc) { bfd_put_NN (output_bfd, 0, got->contents + got_off + ie_off); rela.r_offset = sec_addr (got) + got_off + ie_off; rela.r_addend = 0; if (indx == 0) rela.r_addend = tlsoff (info, relocation); rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_TPRELNN); loongarch_elf_append_rela (output_bfd, srel, &rela); } else { /* In a static link or an executable link with the symbol binding locally, compute offset directly. */ bfd_put_NN (output_bfd, tlsoff (info, relocation), got->contents + got_off + ie_off); } } } relocation = (got_off & (~(bfd_vma)1)) + (is_ie ? ie_off : 0); } break; /* New reloc types. */ case R_LARCH_B16: case R_LARCH_B21: case R_LARCH_B26: case R_LARCH_CALL36: unresolved_reloc = false; bool via_plt = plt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1; if (is_undefweak) { relocation = 0; /* A call to an undefined weak symbol is converted to 0. */ if (!via_plt && IS_CALL_RELOC (r_type)) { /* call36 fn1 => pcaddu18i $ra,0+jirl $ra,$zero,0 tail36 $t0,fn1 => pcaddi18i $t0,0+jirl $zero,$zero,0 */ if (R_LARCH_CALL36 == r_type) { uint32_t jirl = bfd_get (32, input_bfd, contents + rel->r_offset + 4); uint32_t rd = LARCH_GET_RD (jirl); jirl = LARCH_OP_JIRL | rd; bfd_put (32, input_bfd, jirl, contents + rel->r_offset + 4); } else { uint32_t b_bl = bfd_get (32, input_bfd, contents + rel->r_offset); /* b %plt(fn1) => jirl $zero,zero,0. */ if (LARCH_INSN_B (b_bl)) bfd_put (32, input_bfd, LARCH_OP_JIRL, contents + rel->r_offset); else /* bl %plt(fn1) => jirl $ra,zero,0. */ bfd_put (32, input_bfd, LARCH_OP_JIRL | 0x1, contents + rel->r_offset); } r = bfd_reloc_continue; break; } } if (resolved_local) { relocation -= pc; relocation += rel->r_addend; } else if (resolved_dynly) { BFD_ASSERT (h && (h->plt.offset != MINUS_ONE || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) && rel->r_addend == 0); if (h && h->plt.offset == MINUS_ONE && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) { relocation -= pc; relocation += rel->r_addend; } else relocation = sec_addr (plt) + h->plt.offset - pc; } break; case R_LARCH_ABS_HI20: case R_LARCH_ABS_LO12: case R_LARCH_ABS64_LO20: case R_LARCH_ABS64_HI12: if (is_undefweak) { BFD_ASSERT (resolved_dynly); relocation = 0; break; } else if (resolved_to_const || resolved_local) { relocation += rel->r_addend; } else if (resolved_dynly) { unresolved_reloc = false; BFD_ASSERT ((plt && h && h->plt.offset != MINUS_ONE) && rel->r_addend == 0); relocation = sec_addr (plt) + h->plt.offset; } break; case R_LARCH_PCREL20_S2: unresolved_reloc = false; if (h && h->plt.offset != MINUS_ONE) relocation = sec_addr (plt) + h->plt.offset; else relocation += rel->r_addend; relocation -= pc; break; case R_LARCH_PCALA_HI20: unresolved_reloc = false; if (h && h->plt.offset != MINUS_ONE) relocation = sec_addr (plt) + h->plt.offset; else relocation += rel->r_addend; RELOCATE_CALC_PC32_HI20 (relocation, pc); break; case R_LARCH_TLS_LE_HI20_R: relocation += rel->r_addend; relocation = tlsoff (info, relocation); RELOCATE_TLS_TP32_HI20 (relocation); break; case R_LARCH_PCALA_LO12: /* Not support if sym_addr in 2k page edge. pcalau12i pc_hi20 (sym_addr) ld.w/d pc_lo12 (sym_addr) ld.w/d pc_lo12 (sym_addr + x) ... can not calc correct address if sym_addr < 0x800 && sym_addr + x >= 0x800. */ if (h && h->plt.offset != MINUS_ONE) relocation = sec_addr (plt) + h->plt.offset; else relocation += rel->r_addend; /* For 2G jump, generate pcalau12i, jirl. */ /* If use jirl, turns to R_LARCH_B16. */ uint32_t insn = bfd_get (32, input_bfd, contents + rel->r_offset); if (LARCH_INSN_JIRL (insn)) { relocation &= 0xfff; /* Signed extend. */ relocation = (relocation ^ 0x800) - 0x800; rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_B16); howto = loongarch_elf_rtype_to_howto (input_bfd, R_LARCH_B16); } break; case R_LARCH_PCALA64_HI12: pc -= 4; /* Fall through. */ case R_LARCH_PCALA64_LO20: if (h && h->plt.offset != MINUS_ONE) relocation = sec_addr (plt) + h->plt.offset; else relocation += rel->r_addend; RELOCATE_CALC_PC64_HI32 (relocation, pc - 8); break; case R_LARCH_GOT_PC_HI20: case R_LARCH_GOT_HI20: /* Calc got offset. */ { unresolved_reloc = false; BFD_ASSERT (rel->r_addend == 0); bfd_vma got_off = 0; if (h != NULL) { /* GOT ref or ifunc. */ BFD_ASSERT (h->got.offset != MINUS_ONE || h->type == STT_GNU_IFUNC); got_off = h->got.offset & (~(bfd_vma)1); /* Hidden symbol not has got entry, * only got.plt entry so it is (plt - got). */ if (h->got.offset == MINUS_ONE && h->type == STT_GNU_IFUNC) { bfd_vma idx; if (htab->elf.splt != NULL) { idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; got_off = sec_addr (htab->elf.sgotplt) + GOTPLT_HEADER_SIZE + (idx * GOT_ENTRY_SIZE) - sec_addr (htab->elf.sgot); } else { idx = h->plt.offset / PLT_ENTRY_SIZE; got_off = sec_addr (htab->elf.sgotplt) + (idx * GOT_ENTRY_SIZE) - sec_addr (htab->elf.sgot); } } if ((h->got.offset & 1) == 0) { /* We need to generate a R_LARCH_RELATIVE reloc once * in loongarch_elf_finish_dynamic_symbol or now, * call finish_dyn && nopic * or !call finish_dyn && pic. */ if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (is_dyn, bfd_link_pic (info), h) && !bfd_is_abs_section(h->root.u.def.section) && bfd_link_pic (info) && LARCH_REF_LOCAL (info, h) && !info->enable_dt_relr) { Elf_Internal_Rela rela; rela.r_offset = sec_addr (got) + got_off; rela.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); rela.r_addend = relocation; loongarch_elf_append_rela (output_bfd, htab->elf.srelgot, &rela); } h->got.offset |= 1; bfd_put_NN (output_bfd, relocation, got->contents + got_off); } } else { BFD_ASSERT (local_got_offsets && local_got_offsets[r_symndx] != MINUS_ONE); got_off = local_got_offsets[r_symndx] & (~(bfd_vma)1); if (sym->st_shndx != SHN_ABS && (local_got_offsets[r_symndx] & 1) == 0) { if (bfd_link_pic (info) && !info->enable_dt_relr) { Elf_Internal_Rela rela; rela.r_offset = sec_addr (got) + got_off; rela.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); rela.r_addend = relocation; loongarch_elf_append_rela (output_bfd, htab->elf.srelgot, &rela); } local_got_offsets[r_symndx] |= 1; } bfd_put_NN (output_bfd, relocation, got->contents + got_off); } relocation = got_off + sec_addr (got); } if (r_type == R_LARCH_GOT_PC_HI20) RELOCATE_CALC_PC32_HI20 (relocation, pc); break; case R_LARCH_GOT_PC_LO12: case R_LARCH_GOT64_PC_LO20: case R_LARCH_GOT64_PC_HI12: case R_LARCH_GOT_LO12: case R_LARCH_GOT64_LO20: case R_LARCH_GOT64_HI12: { unresolved_reloc = false; bfd_vma got_off; if (h) got_off = h->got.offset & (~(bfd_vma)1); else got_off = local_got_offsets[r_symndx] & (~(bfd_vma)1); if (h && h->got.offset == MINUS_ONE && h->type == STT_GNU_IFUNC) { bfd_vma idx; if (htab->elf.splt != NULL) idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; else idx = h->plt.offset / PLT_ENTRY_SIZE; got_off = sec_addr (htab->elf.sgotplt) + GOTPLT_HEADER_SIZE + (idx * GOT_ENTRY_SIZE) - sec_addr (htab->elf.sgot); } relocation = got_off + sec_addr (got); } if (r_type == R_LARCH_GOT64_PC_HI12) RELOCATE_CALC_PC64_HI32 (relocation, pc - 12); else if (r_type == R_LARCH_GOT64_PC_LO20) RELOCATE_CALC_PC64_HI32 (relocation, pc - 8); break; case R_LARCH_TLS_LE_HI20: case R_LARCH_TLS_LE_LO12: case R_LARCH_TLS_LE_LO12_R: case R_LARCH_TLS_LE64_LO20: case R_LARCH_TLS_LE64_HI12: BFD_ASSERT (resolved_local && elf_hash_table (info)->tls_sec); relocation += rel->r_addend; relocation = tlsoff (info, relocation); break; /* TLS IE LD/GD process separately is troublesome. When a symbol is both ie and LD/GD, h->got.off |= 1 make only one type be relocated. We must use h->got.offset |= 1 and h->got.offset |= 2 diff IE and LD/GD. And all (got_off & (~(bfd_vma)1)) (IE LD/GD and reusable GOT reloc) must change to (got_off & (~(bfd_vma)3)), beause we use lowest 2 bits as a tag. Now, LD and GD is both GOT_TLS_GD type, LD seems to can be omitted. */ case R_LARCH_TLS_IE_PC_HI20: case R_LARCH_TLS_IE_HI20: case R_LARCH_TLS_LD_PC_HI20: case R_LARCH_TLS_LD_HI20: case R_LARCH_TLS_GD_PC_HI20: case R_LARCH_TLS_GD_HI20: case R_LARCH_TLS_DESC_PC_HI20: case R_LARCH_TLS_DESC_HI20: case R_LARCH_TLS_LD_PCREL20_S2: case R_LARCH_TLS_GD_PCREL20_S2: case R_LARCH_TLS_DESC_PCREL20_S2: BFD_ASSERT (rel->r_addend == 0); unresolved_reloc = false; if (r_type == R_LARCH_TLS_IE_PC_HI20 || r_type == R_LARCH_TLS_IE_HI20) is_ie = true; if (r_type == R_LARCH_TLS_DESC_PC_HI20 || r_type == R_LARCH_TLS_DESC_HI20 || r_type == R_LARCH_TLS_DESC_PCREL20_S2) is_desc = true; bfd_vma got_off = 0; if (h != NULL) { got_off = h->got.offset; h->got.offset |= 1; } else { got_off = local_got_offsets[r_symndx]; local_got_offsets[r_symndx] |= 1; } BFD_ASSERT (got_off != MINUS_ONE); tls_type = _bfd_loongarch_elf_tls_type (input_bfd, h, r_symndx); /* If a tls variable is accessed in multiple ways, GD uses the first two slots of GOT, desc follows with two slots, and IE uses one slot at the end. */ off = 0; if (tls_type & GOT_TLS_GD) off += 2 * GOT_ENTRY_SIZE; desc_off = off; if (tls_type & GOT_TLS_GDESC) off += 2 * GOT_ENTRY_SIZE; ie_off = off; if ((got_off & 1) == 0) { Elf_Internal_Rela rela; asection *relgot = htab->elf.srelgot; int indx = 0; bool need_reloc = false; LARCH_TLS_GD_IE_NEED_DYN_RELOC (info, is_dyn, h, indx, need_reloc); if (tls_type & GOT_TLS_GD) { if (need_reloc) { /* Dynamic resolved Module ID. */ rela.r_offset = sec_addr (got) + got_off; rela.r_addend = 0; rela.r_info = ELFNN_R_INFO (indx,R_LARCH_TLS_DTPMODNN); bfd_put_NN (output_bfd, 0, got->contents + got_off); loongarch_elf_append_rela (output_bfd, relgot, &rela); if (indx == 0) { /* Local symbol, tp offset has been known. */ BFD_ASSERT (! unresolved_reloc); bfd_put_NN (output_bfd, tlsoff (info, relocation), (got->contents + got_off + GOT_ENTRY_SIZE)); } else { /* Dynamic resolved block offset. */ bfd_put_NN (output_bfd, 0, got->contents + got_off + GOT_ENTRY_SIZE); rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_DTPRELNN); rela.r_offset += GOT_ENTRY_SIZE; loongarch_elf_append_rela (output_bfd, relgot, &rela); } } else { /* In a static link or an executable link with the symbol binding locally. Mark it as belonging to module 1. */ bfd_put_NN (output_bfd, 1, got->contents + got_off); bfd_put_NN (output_bfd, tlsoff (info, relocation), got->contents + got_off + GOT_ENTRY_SIZE); } } if (tls_type & GOT_TLS_GDESC) { /* Unless it is a static link, DESC always emits a dynamic relocation. */ indx = h && h->dynindx != -1 ? h->dynindx : 0; rela.r_offset = sec_addr (got) + got_off + desc_off; rela.r_addend = 0; if (indx == 0) rela.r_addend = tlsoff (info, relocation); rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_DESCNN); loongarch_elf_append_rela (output_bfd, relgot, &rela); bfd_put_NN (output_bfd, 0, got->contents + got_off + desc_off); } if (tls_type & GOT_TLS_IE) { if (need_reloc) { bfd_put_NN (output_bfd, 0, got->contents + got_off + ie_off); rela.r_offset = sec_addr (got) + got_off + ie_off; rela.r_addend = 0; if (indx == 0) rela.r_addend = tlsoff (info, relocation); rela.r_info = ELFNN_R_INFO (indx, R_LARCH_TLS_TPRELNN); loongarch_elf_append_rela (output_bfd, relgot, &rela); } else { /* In a static link or an executable link with the symbol bindinglocally, compute offset directly. */ bfd_put_NN (output_bfd, tlsoff (info, relocation), got->contents + got_off + ie_off); } } } relocation = (got_off & (~(bfd_vma)1)) + sec_addr (got); if (is_desc) relocation += desc_off; else if (is_ie) relocation += ie_off; if (r_type == R_LARCH_TLS_LD_PC_HI20 || r_type == R_LARCH_TLS_GD_PC_HI20 || r_type == R_LARCH_TLS_IE_PC_HI20 || r_type == R_LARCH_TLS_DESC_PC_HI20) RELOCATE_CALC_PC32_HI20 (relocation, pc); else if (r_type == R_LARCH_TLS_LD_PCREL20_S2 || r_type == R_LARCH_TLS_GD_PCREL20_S2 || r_type == R_LARCH_TLS_DESC_PCREL20_S2) relocation -= pc; /* else {} ABS relocations. */ break; case R_LARCH_TLS_DESC_PC_LO12: case R_LARCH_TLS_DESC64_PC_LO20: case R_LARCH_TLS_DESC64_PC_HI12: case R_LARCH_TLS_DESC_LO12: case R_LARCH_TLS_DESC64_LO20: case R_LARCH_TLS_DESC64_HI12: { unresolved_reloc = false; if (h) relocation = sec_addr (got) + (h->got.offset & (~(bfd_vma)1)); else relocation = sec_addr (got) + (local_got_offsets[r_symndx] & (~(bfd_vma)1)); tls_type = _bfd_loongarch_elf_tls_type (input_bfd, h, r_symndx); /* Use both TLS_GD and TLS_DESC. */ if (GOT_TLS_GD_BOTH_P (tls_type)) relocation += 2 * GOT_ENTRY_SIZE; if (r_type == R_LARCH_TLS_DESC64_PC_LO20) RELOCATE_CALC_PC64_HI32 (relocation, pc - 8); else if (r_type == R_LARCH_TLS_DESC64_PC_HI12) RELOCATE_CALC_PC64_HI32 (relocation, pc - 12); break; } case R_LARCH_TLS_DESC_LD: case R_LARCH_TLS_DESC_CALL: unresolved_reloc = false; break; case R_LARCH_TLS_IE_PC_LO12: case R_LARCH_TLS_IE64_PC_LO20: case R_LARCH_TLS_IE64_PC_HI12: case R_LARCH_TLS_IE_LO12: case R_LARCH_TLS_IE64_LO20: case R_LARCH_TLS_IE64_HI12: unresolved_reloc = false; if (h) relocation = sec_addr (got) + (h->got.offset & (~(bfd_vma)1)); else relocation = sec_addr (got) + (local_got_offsets[r_symndx] & (~(bfd_vma)1)); tls_type = _bfd_loongarch_elf_tls_type (input_bfd, h, r_symndx); /* Use TLS_GD TLS_DESC and TLS_IE. */ if (GOT_TLS_GD_BOTH_P (tls_type) && (tls_type & GOT_TLS_IE)) relocation += 4 * GOT_ENTRY_SIZE; /* Use GOT_TLS_GD_ANY_P (tls_type) and TLS_IE. */ else if (GOT_TLS_GD_ANY_P (tls_type) && (tls_type & GOT_TLS_IE)) relocation += 2 * GOT_ENTRY_SIZE; if (r_type == R_LARCH_TLS_IE64_PC_LO20) RELOCATE_CALC_PC64_HI32 (relocation, pc - 8); else if (r_type == R_LARCH_TLS_IE64_PC_HI12) RELOCATE_CALC_PC64_HI32 (relocation, pc - 12); break; case R_LARCH_RELAX: case R_LARCH_ALIGN: r = bfd_reloc_continue; unresolved_reloc = false; break; default: break; } if (fatal) break; do { /* 'unresolved_reloc' means we haven't done it yet. We need help of dynamic linker to fix this memory location up. */ if (!unresolved_reloc) break; if (_bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset) == MINUS_ONE) /* WHY? May because it's invalid so skip checking. But why dynamic reloc a invalid section? */ break; if (input_section->output_section->flags & SEC_DEBUGGING) { fatal = (loongarch_reloc_is_fatal (info, input_bfd, input_section, rel, howto, bfd_reloc_dangerous, is_undefweak, name, "Seems dynamic linker not process " "sections 'SEC_DEBUGGING'.")); } if (!is_dyn) break; if ((info->flags & DF_TEXTREL) == 0) if (input_section->output_section->flags & SEC_READONLY) info->flags |= DF_TEXTREL; } while (0); if (fatal) break; loongarch_record_one_reloc (input_bfd, input_section, r_type, rel->r_offset, sym, h, rel->r_addend); if (r != bfd_reloc_continue) r = perform_relocation (rel, input_section, howto, relocation, input_bfd, contents); switch (r) { case bfd_reloc_dangerous: case bfd_reloc_continue: case bfd_reloc_ok: continue; case bfd_reloc_overflow: /* Overflow value can't be filled in. */ loongarch_dump_reloc_record (info->callbacks->info); info->callbacks->reloc_overflow (info, h ? &h->root : NULL, name, howto->name, rel->r_addend, input_bfd, input_section, rel->r_offset); if (r_type == R_LARCH_PCREL20_S2 || r_type == R_LARCH_TLS_LD_PCREL20_S2 || r_type == R_LARCH_TLS_GD_PCREL20_S2 || r_type == R_LARCH_TLS_DESC_PCREL20_S2) _bfd_error_handler (_("recompile with 'gcc -mno-relax' or" " 'as -mno-relax' or 'ld --no-relax'")); break; case bfd_reloc_outofrange: /* Stack state incorrect. */ loongarch_dump_reloc_record (info->callbacks->info); info->callbacks->info ("%X%H: Internal stack state is incorrect.\n" "Want to push to full stack or pop from empty stack?\n", input_bfd, input_section, rel->r_offset); break; case bfd_reloc_notsupported: info->callbacks->info ("%X%H: Unknown relocation type.\n", input_bfd, input_section, rel->r_offset); break; default: info->callbacks->info ("%X%H: Internal: unknown error.\n", input_bfd, input_section, rel->r_offset); break; } fatal = true; } return !fatal; } static bool loongarch_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count, struct bfd_link_info *link_info) { unsigned int i, symcount; bfd_vma toaddr = sec->size; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); struct bfd_elf_section_data *data = elf_section_data (sec); bfd_byte *contents = data->this_hdr.contents; struct relr_entry *relr = loongarch_elf_section_data (sec)->relr; struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (link_info); struct relr_entry *relr_end = NULL; if (htab->relr_count) relr_end = htab->relr + htab->relr_count; /* Actually delete the bytes. */ sec->size -= count; memmove (contents + addr, contents + addr + count, toaddr - addr - count); /* Adjust the location of all of the relocs. Note that we need not adjust the addends, since all PC-relative references must be against symbols, which we will adjust below. */ for (i = 0; i < sec->reloc_count; i++) if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) data->relocs[i].r_offset -= count; /* Likewise for relative relocs to be packed into .relr. */ for (; relr && relr < relr_end && relr->sec == sec; relr++) if (relr->off > addr && relr->off < toaddr) relr->off -= count; /* Adjust the local symbols defined in this section. */ for (i = 0; i < symtab_hdr->sh_info; i++) { Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; if (sym->st_shndx == sec_shndx) { /* If the symbol is in the range of memory we just moved, we have to adjust its value. */ if (sym->st_value > addr && sym->st_value <= toaddr) sym->st_value -= count; /* If the symbol *spans* the bytes we just deleted (i.e. its *end* is in the moved bytes but its *start* isn't), then we must adjust its size. This test needs to use the original value of st_value, otherwise we might accidentally decrease size when deleting bytes right before the symbol. But since deleted relocs can't span across symbols, we can't have both a st_value and a st_size decrease, so it is simpler to just use an else. */ else if (sym->st_value <= addr && sym->st_value + sym->st_size > addr && sym->st_value + sym->st_size <= toaddr) sym->st_size -= count; } } /* Now adjust the global symbols defined in this section. */ symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) - symtab_hdr->sh_info); for (i = 0; i < symcount; i++) { struct elf_link_hash_entry *sym_hash = sym_hashes[i]; /* The '--wrap SYMBOL' option is causing a pain when the object file, containing the definition of __wrap_SYMBOL, includes a direct call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference the same symbol (which is __wrap_SYMBOL), but still exist as two different symbols in 'sym_hashes', we don't want to adjust the global symbol __wrap_SYMBOL twice. The same problem occurs with symbols that are versioned_hidden, as foo becomes an alias for foo@BAR, and hence they need the same treatment. */ if (link_info->wrap_hash != NULL || sym_hash->versioned != unversioned) { struct elf_link_hash_entry **cur_sym_hashes; /* Loop only over the symbols which have already been checked. */ for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i]; cur_sym_hashes++) { /* If the current symbol is identical to 'sym_hash', that means the symbol was already adjusted (or at least checked). */ if (*cur_sym_hashes == sym_hash) break; } /* Don't adjust the symbol again. */ if (cur_sym_hashes < &sym_hashes[i]) continue; } if ((sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec) { /* As above, adjust the value if needed. */ if (sym_hash->root.u.def.value > addr && sym_hash->root.u.def.value <= toaddr) sym_hash->root.u.def.value -= count; /* As above, adjust the size if needed. */ else if (sym_hash->root.u.def.value <= addr && sym_hash->root.u.def.value + sym_hash->size > addr && sym_hash->root.u.def.value + sym_hash->size <= toaddr) sym_hash->size -= count; } } return true; } /* Start perform TLS type transition. Currently there are three cases of relocation handled here: DESC -> IE, DEC -> LE and IE -> LE. */ static bool loongarch_tls_perform_trans (bfd *abfd, asection *sec, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, struct bfd_link_info *info) { unsigned long insn; bool local_exec = bfd_link_executable (info) && LARCH_REF_LOCAL (info, h); bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; unsigned long r_type = ELFNN_R_TYPE (rel->r_info); unsigned long r_symndx = ELFNN_R_SYM (rel->r_info); switch (r_type) { case R_LARCH_TLS_DESC_PC_HI20: if (local_exec) { /* DESC -> LE relaxation: pcalalau12i $a0,%desc_pc_hi20(var) => lu12i.w $a0,%le_hi20(var) */ bfd_put (32, abfd, LARCH_OP_LU12I_W | LARCH_RD_A0, contents + rel->r_offset); rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_LE_HI20); } else { /* DESC -> IE relaxation: pcalalau12i $a0,%desc_pc_hi20(var) => pcalalau12i $a0,%ie_pc_hi20(var) */ rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_IE_PC_HI20); } return true; case R_LARCH_TLS_DESC_PC_LO12: if (local_exec) { /* DESC -> LE relaxation: addi.d $a0,$a0,%desc_pc_lo12(var) => ori $a0,$a0,le_lo12(var) */ insn = LARCH_OP_ORI | LARCH_RD_RJ_A0; bfd_put (32, abfd, LARCH_OP_ORI | LARCH_RD_RJ_A0, contents + rel->r_offset); rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_LE_LO12); } else { /* DESC -> IE relaxation: addi.d $a0,$a0,%desc_pc_lo12(var) => ld.d $a0,$a0,%ie_pc_lo12(var) */ bfd_put (32, abfd, LARCH_OP_LD_D | LARCH_RD_RJ_A0, contents + rel->r_offset); rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_IE_PC_LO12); } return true; case R_LARCH_TLS_DESC_LD: case R_LARCH_TLS_DESC_CALL: /* DESC -> LE/IE relaxation: ld.d $ra,$a0,%desc_ld(var) => NOP jirl $ra,$ra,%desc_call(var) => NOP */ rel->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); bfd_put (32, abfd, LARCH_NOP, contents + rel->r_offset); /* link with -relax option will delete NOP. */ if (!info->disable_target_specific_optimizations) loongarch_relax_delete_bytes (abfd, sec, rel->r_offset, 4, info); return true; case R_LARCH_TLS_IE_PC_HI20: if (local_exec) { /* IE -> LE relaxation: pcalalau12i $rd,%ie_pc_hi20(var) => lu12i.w $rd,%le_hi20(var) */ insn = bfd_getl32 (contents + rel->r_offset); bfd_put (32, abfd, LARCH_OP_LU12I_W | LARCH_GET_RD(insn), contents + rel->r_offset); rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_LE_HI20); } return true; case R_LARCH_TLS_IE_PC_LO12: if (local_exec) { /* IE -> LE relaxation: ld.d $rd,$rj,%%ie_pc_lo12(var) => ori $rd,$rj,le_lo12(var) */ insn = bfd_getl32 (contents + rel->r_offset); bfd_put (32, abfd, LARCH_OP_ORI | (insn & 0x3ff), contents + rel->r_offset); rel->r_info = ELFNN_R_INFO (r_symndx, R_LARCH_TLS_LE_LO12); } return true; } return false; } /* Relax tls le, mainly relax the process of getting TLS le symbolic addresses. there are three situations in which an assembly instruction sequence needs to be relaxed: symbol address = tp + offset (symbol),offset (symbol) = le_hi20_r + le_lo12_r Case 1: in this case, the rd register in the st.{w/d} instruction does not store the full tls symbolic address, but tp + le_hi20_r, which is a part of the tls symbolic address, and then obtains the rd + le_lo12_r address through the st.w instruction feature. this is the full tls symbolic address (tp + le_hi20_r + le_lo12_r). before relax: after relax: lu12i.w $rd,%le_hi20_r (sym) ==> (instruction deleted) add.{w/d} $rd,$rd,$tp,%le_add_r (sym) ==> (instruction deleted) st.{w/d} $rs,$rd,%le_lo12_r (sym) ==> st.{w/d} $rs,$tp,%le_lo12_r (sym) Case 2: in this case, ld.{w/d} is similar to st.{w/d} in case1. before relax: after relax: lu12i.w $rd,%le_hi20_r (sym) ==> (instruction deleted) add.{w/d} $rd,$rd,$tp,%le_add_r (sym) ==> (instruction deleted) ld.{w/d} $rs,$rd,%le_lo12_r (sym) ==> ld.{w/d} $rs,$tp,%le_lo12_r (sym) Case 3: in this case,the rs register in addi.{w/d} stores the full address of the tls symbol (tp + le_hi20_r + le_lo12_r). before relax: after relax: lu12i.w $rd,%le_hi20_r (sym) ==> (instruction deleted) add.{w/d} $rd,$rd,$tp,%le_add_r (sym) ==> (instruction deleted) addi.{w/d} $rs,$rd,%le_lo12_r (sym) ==> addi.{w/d} $rs,$tp,%le_lo12_r (sym) For relocation of all old LE instruction sequences, whether it is a normal code model or an extreme code model, relaxation will be performed when the relaxation conditions are met. nomal code model: lu12i.w $rd,%le_hi20(sym) => (deleted) ori $rd,$rd,le_lo12(sym) => ori $rd,$zero,le_lo12(sym) extreme code model: lu12i.w $rd,%le_hi20(sym) => (deleted) ori $rd,$rd,%le_lo12(sym) => ori $rd,$zero,le_lo12(sym) lu32i.d $rd,%le64_lo20(sym) => (deleted) lu52i.d $rd,$rd,%le64_hi12(sym) => (deleted) */ static bool loongarch_relax_tls_le (bfd *abfd, asection *sec, asection *sym_sec ATTRIBUTE_UNUSED, Elf_Internal_Rela *rel, bfd_vma symval, struct bfd_link_info *link_info, bool *agin ATTRIBUTE_UNUSED, bfd_vma max_alignment ATTRIBUTE_UNUSED) { bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; uint32_t insn = bfd_get (32, abfd, contents + rel->r_offset); static uint32_t insn_rj,insn_rd; symval = symval - elf_hash_table (link_info)->tls_sec->vma; /* The old LE instruction sequence can be relaxed when the symbol offset is smaller than the 12-bit range. */ if (symval <= 0xfff) { switch (ELFNN_R_TYPE (rel->r_info)) { /*if offset < 0x800, then perform the new le instruction sequence relax. */ case R_LARCH_TLS_LE_HI20_R: case R_LARCH_TLS_LE_ADD_R: /* delete insn. */ if (symval < 0x800) { rel->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); loongarch_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info); } break; case R_LARCH_TLS_LE_LO12_R: if (symval < 0x800) { /* Change rj to $tp. */ insn_rj = 0x2 << 5; /* Get rd register. */ insn_rd = LARCH_GET_RD (insn); /* Write symbol offset. */ symval <<= 10; /* Writes the modified instruction. */ insn = insn & LARCH_MK_ADDI_D; insn = insn | symval | insn_rj | insn_rd; bfd_put (32, abfd, insn, contents + rel->r_offset); } break; case R_LARCH_TLS_LE_HI20: case R_LARCH_TLS_LE64_LO20: case R_LARCH_TLS_LE64_HI12: rel->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); loongarch_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info); break; case R_LARCH_TLS_LE_LO12: bfd_put (32, abfd, LARCH_OP_ORI | LARCH_GET_RD (insn), contents + rel->r_offset); break; default: break; } } return true; } /* Whether two sections in the same segment. */ static bool loongarch_two_sections_in_same_segment (bfd *abfd, asection *a, asection *b) { struct elf_segment_map *m; for (m = elf_seg_map (abfd); m != NULL; m = m->next) { int i; int j = 0; for (i = m->count - 1; i >= 0; i--) { if (m->sections[i] == a) j++; if (m->sections[i] == b) j++; } if (1 == j) return false; if (2 == j) return true; } return false; } /* Relax pcalau12i,addi.d => pcaddi. */ static bool loongarch_relax_pcala_addi (bfd *abfd, asection *sec, asection *sym_sec, Elf_Internal_Rela *rel_hi, bfd_vma symval, struct bfd_link_info *info, bool *again, bfd_vma max_alignment) { bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; Elf_Internal_Rela *rel_lo = rel_hi + 2; uint32_t pca = bfd_get (32, abfd, contents + rel_hi->r_offset); uint32_t add = bfd_get (32, abfd, contents + rel_lo->r_offset); uint32_t rd = LARCH_GET_RD (pca); /* This section's output_offset need to subtract the bytes of instructions relaxed by the previous sections, so it needs to be updated beforehand. size_input_section already took care of updating it after relaxation, so we additionally update once here. */ sec->output_offset = sec->output_section->size; bfd_vma pc = sec_addr (sec) + rel_hi->r_offset; /* If pc and symbol not in the same segment, add/sub segment alignment. */ if (!loongarch_two_sections_in_same_segment (info->output_bfd, sec->output_section, sym_sec->output_section)) max_alignment = info->maxpagesize > max_alignment ? info->maxpagesize : max_alignment; if (symval > pc) pc -= (max_alignment > 4 ? max_alignment : 0); else if (symval < pc) pc += (max_alignment > 4 ? max_alignment : 0); const uint32_t pcaddi = LARCH_OP_PCADDI; /* Is pcalau12i + addi.d insns? */ if ((ELFNN_R_TYPE (rel_lo->r_info) != R_LARCH_PCALA_LO12) || !LARCH_INSN_ADDI_D (add) /* Is pcalau12i $rd + addi.d $rd,$rd? */ || (LARCH_GET_RD (add) != rd) || (LARCH_GET_RJ (add) != rd) /* Can be relaxed to pcaddi? */ || (symval & 0x3) /* 4 bytes align. */ || ((bfd_signed_vma)(symval - pc) < (bfd_signed_vma)(int32_t)0xffe00000) || ((bfd_signed_vma)(symval - pc) > (bfd_signed_vma)(int32_t)0x1ffffc)) return false; /* Continue next relax trip. */ *again = true; pca = pcaddi | rd; bfd_put (32, abfd, pca, contents + rel_hi->r_offset); /* Adjust relocations. */ rel_hi->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_hi->r_info), R_LARCH_PCREL20_S2); rel_lo->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); loongarch_relax_delete_bytes (abfd, sec, rel_lo->r_offset, 4, info); return true; } /* call36 f -> bl f tail36 $t0, f -> b f. */ static bool loongarch_relax_call36 (bfd *abfd, asection *sec, asection *sym_sec, Elf_Internal_Rela *rel, bfd_vma symval, struct bfd_link_info *info, bool *again, bfd_vma max_alignment) { bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; uint32_t jirl = bfd_get (32, abfd, contents + rel->r_offset + 4); uint32_t rd = LARCH_GET_RD (jirl); /* This section's output_offset need to subtract the bytes of instructions relaxed by the previous sections, so it needs to be updated beforehand. size_input_section already took care of updating it after relaxation, so we additionally update once here. */ sec->output_offset = sec->output_section->size; bfd_vma pc = sec_addr (sec) + rel->r_offset; /* If pc and symbol not in the same segment, add/sub segment alignment. */ if (!loongarch_two_sections_in_same_segment (info->output_bfd, sec->output_section, sym_sec->output_section)) max_alignment = info->maxpagesize > max_alignment ? info->maxpagesize : max_alignment; if (symval > pc) pc -= (max_alignment > 4 ? max_alignment : 0); else if (symval < pc) pc += (max_alignment > 4 ? max_alignment : 0); /* Is pcalau12i + addi.d insns? */ if (!LARCH_INSN_JIRL (jirl) || ((bfd_signed_vma)(symval - pc) < (bfd_signed_vma)(int32_t)0xf8000000) || ((bfd_signed_vma)(symval - pc) > (bfd_signed_vma)(int32_t)0x7fffffc)) return false; /* Continue next relax trip. */ *again = true; const uint32_t bl = LARCH_OP_BL; const uint32_t b = LARCH_OP_B; if (rd) bfd_put (32, abfd, bl, contents + rel->r_offset); else bfd_put (32, abfd, b, contents + rel->r_offset); /* Adjust relocations. */ rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_LARCH_B26); /* Delete jirl instruction. */ loongarch_relax_delete_bytes (abfd, sec, rel->r_offset + 4, 4, info); return true; } /* Relax pcalau12i,ld.d => pcalau12i,addi.d. */ static bool loongarch_relax_pcala_ld (bfd *abfd, asection *sec, asection *sym_sec, Elf_Internal_Rela *rel_hi, bfd_vma symval, struct bfd_link_info *info, bool *again ATTRIBUTE_UNUSED, bfd_vma max_alignment) { bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; Elf_Internal_Rela *rel_lo = rel_hi + 2; uint32_t pca = bfd_get (32, abfd, contents + rel_hi->r_offset); uint32_t ld = bfd_get (32, abfd, contents + rel_lo->r_offset); uint32_t rd = LARCH_GET_RD (pca); uint32_t addi_d = LARCH_OP_ADDI_D; /* This section's output_offset need to subtract the bytes of instructions relaxed by the previous sections, so it needs to be updated beforehand. size_input_section already took care of updating it after relaxation, so we additionally update once here. */ sec->output_offset = sec->output_section->size; bfd_vma pc = sec_addr (sec) + rel_hi->r_offset; /* If pc and symbol not in the same segment, add/sub segment alignment. */ if (!loongarch_two_sections_in_same_segment (info->output_bfd, sec->output_section, sym_sec->output_section)) max_alignment = info->maxpagesize > max_alignment ? info->maxpagesize : max_alignment; if (symval > pc) pc -= (max_alignment > 4 ? max_alignment : 0); else if (symval < pc) pc += (max_alignment > 4 ? max_alignment : 0); if ((ELFNN_R_TYPE (rel_lo->r_info) != R_LARCH_GOT_PC_LO12) || (LARCH_GET_RD (ld) != rd) || (LARCH_GET_RJ (ld) != rd) || !LARCH_INSN_LD_D (ld) /* Within +-2G addressing range. */ || (bfd_signed_vma)(symval - pc) < (bfd_signed_vma)(int32_t)0x80000000 || (bfd_signed_vma)(symval - pc) > (bfd_signed_vma)(int32_t)0x7fffffff) return false; addi_d = addi_d | (rd << 5) | rd; bfd_put (32, abfd, addi_d, contents + rel_lo->r_offset); rel_hi->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_hi->r_info), R_LARCH_PCALA_HI20); rel_lo->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_lo->r_info), R_LARCH_PCALA_LO12); return true; } /* Called by after_allocation to set the information of data segment before relaxing. */ void bfd_elfNN_loongarch_set_data_segment_info (struct bfd_link_info *info, int *data_segment_phase) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); htab->data_segment_phase = data_segment_phase; } /* Implement R_LARCH_ALIGN by deleting excess alignment NOPs. Once we've handled an R_LARCH_ALIGN, we can't relax anything else. */ static bool loongarch_relax_align (bfd *abfd, asection *sec, asection *sym_sec, Elf_Internal_Rela *rel, bfd_vma symval ATTRIBUTE_UNUSED, struct bfd_link_info *link_info, bool *again ATTRIBUTE_UNUSED, bfd_vma max_alignment ATTRIBUTE_UNUSED) { bfd_vma addend, max = 0, alignment = 1; int sym_index = ELFNN_R_SYM (rel->r_info); if (sym_index > 0) { alignment = 1 << (rel->r_addend & 0xff); max = rel->r_addend >> 8; } else alignment = rel->r_addend + 4; addend = alignment - 4; /* The bytes of NOPs added by R_LARCH_ALIGN. */ symval -= addend; /* The address of first NOP added by R_LARCH_ALIGN. */ bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; bfd_vma need_nop_bytes = aligned_addr - symval; /* */ /* Make sure there are enough NOPs to actually achieve the alignment. */ if (addend < need_nop_bytes) { _bfd_error_handler (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment " "to %" PRId64 "-byte boundary, but only %" PRId64 " present"), abfd, sym_sec, (uint64_t) rel->r_offset, (int64_t) need_nop_bytes, (int64_t) alignment, (int64_t) addend); bfd_set_error (bfd_error_bad_value); return false; } /* Once we've handled an R_LARCH_ALIGN in a section, we can't relax anything else in this section. */ sec->sec_flg0 = true; rel->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); /* If skipping more bytes than the specified maximum, then the alignment is not done at all and delete all NOPs. */ if (max > 0 && need_nop_bytes > max) return loongarch_relax_delete_bytes (abfd, sec, rel->r_offset, addend, link_info); /* If the number of NOPs is already correct, there's nothing to do. */ if (need_nop_bytes == addend) return true; /* Delete the excess NOPs. */ return loongarch_relax_delete_bytes (abfd, sec, rel->r_offset + need_nop_bytes, addend - need_nop_bytes, link_info); } /* Relax pcalau12i + addi.d of TLS LD/GD/DESC to pcaddi. */ static bool loongarch_relax_tls_ld_gd_desc (bfd *abfd, asection *sec, asection *sym_sec, Elf_Internal_Rela *rel_hi, bfd_vma symval, struct bfd_link_info *info, bool *again, bfd_vma max_alignment) { bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; Elf_Internal_Rela *rel_lo = rel_hi + 2; uint32_t pca = bfd_get (32, abfd, contents + rel_hi->r_offset); uint32_t add = bfd_get (32, abfd, contents + rel_lo->r_offset); uint32_t rd = LARCH_GET_RD (pca); /* This section's output_offset need to subtract the bytes of instructions relaxed by the previous sections, so it needs to be updated beforehand. size_input_section already took care of updating it after relaxation, so we additionally update once here. */ sec->output_offset = sec->output_section->size; bfd_vma pc = sec_addr (sec) + rel_hi->r_offset; /* If pc and symbol not in the same segment, add/sub segment alignment. */ if (!loongarch_two_sections_in_same_segment (info->output_bfd, sec->output_section, sym_sec->output_section)) max_alignment = info->maxpagesize > max_alignment ? info->maxpagesize : max_alignment; if (symval > pc) pc -= (max_alignment > 4 ? max_alignment : 0); else if (symval < pc) pc += (max_alignment > 4 ? max_alignment : 0); const uint32_t pcaddi = LARCH_OP_PCADDI; /* Is pcalau12i + addi.d insns? */ if ((ELFNN_R_TYPE (rel_lo->r_info) != R_LARCH_GOT_PC_LO12 && ELFNN_R_TYPE (rel_lo->r_info) != R_LARCH_TLS_DESC_PC_LO12) || !LARCH_INSN_ADDI_D (add) /* Is pcalau12i $rd + addi.d $rd,$rd? */ || (LARCH_GET_RD (add) != rd) || (LARCH_GET_RJ (add) != rd) /* Can be relaxed to pcaddi? */ || (symval & 0x3) /* 4 bytes align. */ || ((bfd_signed_vma)(symval - pc) < (bfd_signed_vma)(int32_t)0xffe00000) || ((bfd_signed_vma)(symval - pc) > (bfd_signed_vma)(int32_t)0x1ffffc)) return false; /* Continue next relax trip. */ *again = true; pca = pcaddi | rd; bfd_put (32, abfd, pca, contents + rel_hi->r_offset); /* Adjust relocations. */ switch (ELFNN_R_TYPE (rel_hi->r_info)) { case R_LARCH_TLS_LD_PC_HI20: rel_hi->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_hi->r_info), R_LARCH_TLS_LD_PCREL20_S2); break; case R_LARCH_TLS_GD_PC_HI20: rel_hi->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_hi->r_info), R_LARCH_TLS_GD_PCREL20_S2); break; case R_LARCH_TLS_DESC_PC_HI20: rel_hi->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel_hi->r_info), R_LARCH_TLS_DESC_PCREL20_S2); break; default: break; } rel_lo->r_info = ELFNN_R_INFO (0, R_LARCH_NONE); loongarch_relax_delete_bytes (abfd, sec, rel_lo->r_offset, 4, info); return true; } /* Traverse all output sections and return the max alignment. */ static bfd_vma loongarch_get_max_alignment (asection *sec) { asection *o; unsigned int max_alignment_power = 0; for (o = sec->output_section->owner->sections; o != NULL; o = o->next) if (o->alignment_power > max_alignment_power) max_alignment_power = o->alignment_power; return (bfd_vma) 1 << max_alignment_power; } typedef bool (*relax_func_t) (bfd *, asection *, asection *, Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, bool *, bfd_vma); static bool loongarch_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *info, bool *again) { *again = false; if (!is_elf_hash_table (info->hash) || elf_hash_table_id (elf_hash_table (info)) != LARCH_ELF_DATA) return true; struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); /* It may happen that some sections have updated vma but the others do not. Go to the next relax trip (size_relative_relocs should have been demending another relax trip anyway). */ if (htab->layout_mutating_for_relr) return true; if (bfd_link_relocatable (info) || sec->sec_flg0 || sec->reloc_count == 0 || (sec->flags & SEC_RELOC) == 0 || (sec->flags & SEC_HAS_CONTENTS) == 0 /* The exp_seg_relro_adjust is enum phase_enum (0x4). */ || *(htab->data_segment_phase) == 4 || (info->disable_target_specific_optimizations && info->relax_pass == 0)) return true; struct bfd_elf_section_data *data = elf_section_data (sec); Elf_Internal_Rela *relocs; if (data->relocs) relocs = data->relocs; else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, info->keep_memory))) return true; data->relocs = relocs; /* Read this BFD's contents if we haven't done so already. */ if (!data->this_hdr.contents && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) return true; /* Read this BFD's symbols if we haven't done so already. */ Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); if (symtab_hdr->sh_info != 0 && !symtab_hdr->contents && !(symtab_hdr->contents = (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL))) return true; /* Estimate the maximum alignment for all output sections once time should be enough. */ bfd_vma max_alignment = htab->max_alignment; if (max_alignment == (bfd_vma) -1) { max_alignment = loongarch_get_max_alignment (sec); htab->max_alignment = max_alignment; } for (unsigned int i = 0; i < sec->reloc_count; i++) { char symtype; bfd_vma symval; asection *sym_sec; bool local_got = false; Elf_Internal_Rela *rel = relocs + i; struct elf_link_hash_entry *h = NULL; unsigned long r_type = ELFNN_R_TYPE (rel->r_info); unsigned long r_symndx = ELFNN_R_SYM (rel->r_info); if (r_symndx >= symtab_hdr->sh_info) { h = elf_sym_hashes (abfd)[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } /* If the conditions for tls type transition are met, type transition is performed instead of relax. During the transition from DESC->IE/LE, there are 2 situations depending on the different configurations of the relax/norelax option. If the -relax option is used, the extra nops will be removed, and this transition is performed in pass 0. If the --no-relax option is used, nop will be retained, and this transition is performed in pass 1. */ if (IS_LOONGARCH_TLS_TRANS_RELOC (r_type) && (i + 1 != sec->reloc_count) && ELFNN_R_TYPE (rel[1].r_info) == R_LARCH_RELAX && rel->r_offset == rel[1].r_offset && loongarch_can_trans_tls (abfd, info, h, r_symndx, r_type)) { loongarch_tls_perform_trans (abfd, sec, rel, h, info); r_type = ELFNN_R_TYPE (rel->r_info); } relax_func_t relax_func = NULL; if (info->relax_pass == 0) { switch (r_type) { case R_LARCH_PCALA_HI20: relax_func = loongarch_relax_pcala_addi; break; case R_LARCH_GOT_PC_HI20: relax_func = loongarch_relax_pcala_ld; break; case R_LARCH_CALL36: relax_func = loongarch_relax_call36; break; case R_LARCH_TLS_LE_HI20_R: case R_LARCH_TLS_LE_LO12_R: case R_LARCH_TLS_LE_ADD_R: case R_LARCH_TLS_LE_HI20: case R_LARCH_TLS_LE_LO12: case R_LARCH_TLS_LE64_LO20: case R_LARCH_TLS_LE64_HI12: relax_func = loongarch_relax_tls_le; break; case R_LARCH_TLS_LD_PC_HI20: case R_LARCH_TLS_GD_PC_HI20: case R_LARCH_TLS_DESC_PC_HI20: relax_func = loongarch_relax_tls_ld_gd_desc; break; default: continue; } /* Only relax this reloc if it is paired with R_RISCV_RELAX. */ if (r_type == R_LARCH_TLS_LD_PC_HI20 || r_type == R_LARCH_TLS_GD_PC_HI20 || r_type == R_LARCH_TLS_DESC_PC_HI20 || r_type == R_LARCH_PCALA_HI20 || r_type == R_LARCH_GOT_PC_HI20) { if ((i + 2) == sec->reloc_count - 1 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_LARCH_RELAX || ELFNN_R_TYPE ((rel + 3)->r_info) != R_LARCH_RELAX || rel->r_offset != (rel + 1)->r_offset || (rel + 2)->r_offset != (rel + 3)->r_offset || rel->r_offset + 4 != (rel + 2)->r_offset) continue; } else { if (i == sec->reloc_count - 1 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_LARCH_RELAX || rel->r_offset != (rel + 1)->r_offset) continue; } } else if (info->relax_pass == 1 && r_type == R_LARCH_ALIGN) relax_func = loongarch_relax_align; else continue; /* Four kind of relocations: Normal: symval is the symbol address. R_LARCH_ALIGN: symval is the address of the last NOP instruction added by this relocation, and then adds 4 more. R_LARCH_CALL36: symval is the symbol address for local symbols, or the PLT entry address of the symbol. (Todo) R_LARCHL_TLS_LD/GD/DESC_PC_HI20: symval is the GOT entry address of the symbol if transition is not possible. */ if (r_symndx < symtab_hdr->sh_info) { Elf_Internal_Sym *sym = (Elf_Internal_Sym *)symtab_hdr->contents + r_symndx; if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC && r_type != R_LARCH_CALL36) || sym->st_shndx == SHN_ABS) continue; /* Only TLS instruction sequences that are accompanied by R_LARCH_RELAX and cannot perform type transition can be relaxed. */ if (r_type == R_LARCH_TLS_LD_PC_HI20 || r_type == R_LARCH_TLS_GD_PC_HI20 || r_type == R_LARCH_TLS_DESC_PC_HI20) { sym_sec = htab->elf.sgot; symval = elf_local_got_offsets (abfd)[r_symndx]; char tls_type = _bfd_loongarch_elf_tls_type (abfd, h, r_symndx); if (r_type == R_LARCH_TLS_DESC_PC_HI20 && GOT_TLS_GD_BOTH_P (tls_type)) symval += 2 * GOT_ENTRY_SIZE; } else if (sym->st_shndx == SHN_UNDEF || r_type == R_LARCH_ALIGN) { sym_sec = sec; symval = rel->r_offset; } else { sym_sec = elf_elfsections (abfd)[sym->st_shndx]->bfd_section; symval = sym->st_value; } symtype = ELF_ST_TYPE (sym->st_info); } else { if (h != NULL && ((h->type == STT_GNU_IFUNC && r_type != R_LARCH_CALL36) || bfd_is_abs_section (h->root.u.def.section))) continue; /* The GOT entry of tls symbols must in current execute file or shared object. */ if (r_type == R_LARCH_TLS_LD_PC_HI20 || r_type == R_LARCH_TLS_GD_PC_HI20 || r_type == R_LARCH_TLS_DESC_PC_HI20) { sym_sec = htab->elf.sgot; symval = h->got.offset; char tls_type = _bfd_loongarch_elf_tls_type (abfd, h, r_symndx); if (r_type == R_LARCH_TLS_DESC_PC_HI20 && GOT_TLS_GD_BOTH_P (tls_type)) symval += 2 * GOT_ENTRY_SIZE; } else if (h->plt.offset != MINUS_ONE) { sym_sec = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; symval = h->plt.offset; } /* Like loongarch_elf_relocate_section, set relocation(offset) to 0. Undefweak for other relocations handing in the future. */ else if (h->root.type == bfd_link_hash_undefweak && !h->root.linker_def && r_type == R_LARCH_CALL36) { sym_sec = sec; symval = rel->r_offset; } else if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->root.u.def.section != NULL && h->root.u.def.section->output_section != NULL) { sym_sec = h->root.u.def.section; symval = h->root.u.def.value; } else continue; if (h && LARCH_REF_LOCAL (info, h)) local_got = true; symtype = h->type; } if (sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE && (sym_sec->flags & SEC_MERGE)) { if (symtype == STT_SECTION) symval += rel->r_addend; symval = _bfd_merged_section_offset (abfd, &sym_sec, elf_section_data (sym_sec)->sec_info, symval); if (symtype != STT_SECTION) symval += rel->r_addend; } /* For R_LARCH_ALIGN, symval is sec_addr (sec) + rel->r_offset + (alingmeng - 4). If r_symndx is 0, alignmeng-4 is r_addend. If r_symndx > 0, alignment-4 is 2^(r_addend & 0xff)-4. */ else if (r_type == R_LARCH_ALIGN) if (r_symndx > 0) symval += ((1 << (rel->r_addend & 0xff)) - 4); else symval += rel->r_addend; else symval += rel->r_addend; symval += sec_addr (sym_sec); if (r_type == R_LARCH_GOT_PC_HI20 && !local_got) continue; if (relax_func (abfd, sec, sym_sec, rel, symval, info, again, max_alignment) && relax_func == loongarch_relax_pcala_ld) loongarch_relax_pcala_addi (abfd, sec, sym_sec, rel, symval, info, again, max_alignment); } return true; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bool loongarch_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); if (h->plt.offset != MINUS_ONE) { size_t i, plt_idx; asection *plt, *gotplt, *relplt; bfd_vma got_address; uint32_t plt_entry[PLT_ENTRY_INSNS]; bfd_byte *loc; Elf_Internal_Rela rela; if (htab->elf.splt) { BFD_ASSERT ((h->type == STT_GNU_IFUNC && LARCH_REF_LOCAL (info, h)) || h->dynindx != -1); plt = htab->elf.splt; gotplt = htab->elf.sgotplt; if (h->type == STT_GNU_IFUNC && LARCH_REF_LOCAL (info, h)) relplt = htab->elf.srelgot; else relplt = htab->elf.srelplt; plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; got_address = sec_addr (gotplt) + GOTPLT_HEADER_SIZE + plt_idx * GOT_ENTRY_SIZE; } else /* if (htab->elf.iplt) */ { BFD_ASSERT (h->type == STT_GNU_IFUNC && LARCH_REF_LOCAL (info, h)); plt = htab->elf.iplt; gotplt = htab->elf.igotplt; relplt = htab->elf.irelplt; plt_idx = h->plt.offset / PLT_ENTRY_SIZE; got_address = sec_addr (gotplt) + plt_idx * GOT_ENTRY_SIZE; } /* Find out where the .plt entry should go. */ loc = plt->contents + h->plt.offset; /* Fill in the PLT entry itself. */ if (!loongarch_make_plt_entry (got_address, sec_addr (plt) + h->plt.offset, plt_entry)) return false; for (i = 0; i < PLT_ENTRY_INSNS; i++) bfd_put_32 (output_bfd, plt_entry[i], loc + 4 * i); /* Fill in the initial value of the got.plt entry. */ loc = gotplt->contents + (got_address - sec_addr (gotplt)); bfd_put_NN (output_bfd, sec_addr (plt), loc); rela.r_offset = got_address; /* TRUE if this is a PLT reference to a local IFUNC. */ if (PLT_LOCAL_IFUNC_P (info, h) && (relplt == htab->elf.srelgot || relplt == htab->elf.irelplt)) { rela.r_info = ELFNN_R_INFO (0, R_LARCH_IRELATIVE); rela.r_addend = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); loongarch_elf_append_rela (output_bfd, relplt, &rela); } else { /* Fill in the entry in the rela.plt section. */ rela.r_info = ELFNN_R_INFO (h->dynindx, R_LARCH_JUMP_SLOT); rela.r_addend = 0; loc = relplt->contents + plt_idx * sizeof (ElfNN_External_Rela); bed->s->swap_reloca_out (output_bfd, &rela, loc); } if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; /* If the symbol is weak, we do need to clear the value. Otherwise, the PLT entry would provide a definition for the symbol even if the symbol wasn't defined anywhere, and so the symbol would never be NULL. */ if (!h->ref_regular_nonweak) sym->st_value = 0; } } if (h->got.offset != MINUS_ONE /* TLS got entry have been handled in elf_relocate_section. */ && !(loongarch_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE | GOT_TLS_GDESC)) /* Have allocated got entry but not allocated rela before. */ && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) { asection *sgot, *srela; Elf_Internal_Rela rela; bfd_vma off = h->got.offset & ~(bfd_vma)1; /* This symbol has an entry in the GOT. Set it up. */ sgot = htab->elf.sgot; srela = htab->elf.srelgot; BFD_ASSERT (sgot && srela); rela.r_offset = sec_addr (sgot) + off; if (h->def_regular && h->type == STT_GNU_IFUNC) { if(h->plt.offset == MINUS_ONE) { if (htab->elf.splt == NULL) srela = htab->elf.irelplt; if (LARCH_REF_LOCAL (info, h)) { asection *sec = h->root.u.def.section; rela.r_info = ELFNN_R_INFO (0, R_LARCH_IRELATIVE); rela.r_addend = h->root.u.def.value + sec->output_section->vma + sec->output_offset; bfd_put_NN (output_bfd, 0, sgot->contents + off); } else { BFD_ASSERT (h->dynindx != -1); rela.r_info = ELFNN_R_INFO (h->dynindx, R_LARCH_NN); rela.r_addend = 0; bfd_put_NN (output_bfd, (bfd_vma) 0, sgot->contents + off); } } else if(bfd_link_pic (info)) { rela.r_info = ELFNN_R_INFO (h->dynindx, R_LARCH_NN); rela.r_addend = 0; bfd_put_NN (output_bfd, rela.r_addend, sgot->contents + off); } else { asection *plt; /* For non-shared object, we can't use .got.plt, which contains the real function address if we need pointer equality. We load the GOT entry with the PLT entry. */ plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; bfd_put_NN (output_bfd, (plt->output_section->vma + plt->output_offset + h->plt.offset), sgot->contents + off); return true; } } else if (bfd_link_pic (info) && LARCH_REF_LOCAL (info, h)) { asection *sec = h->root.u.def.section; bfd_vma linkaddr = h->root.u.def.value + sec->output_section->vma + sec->output_offset; /* Don't emit relative relocs if they are packed, but we need to write the addend (link-time addr) into the GOT then. */ if (info->enable_dt_relr) { bfd_put_NN (output_bfd, linkaddr, sgot->contents + off); goto skip_got_reloc; } rela.r_info = ELFNN_R_INFO (0, R_LARCH_RELATIVE); rela.r_addend = linkaddr; } else { BFD_ASSERT (h->dynindx != -1); rela.r_info = ELFNN_R_INFO (h->dynindx, R_LARCH_NN); rela.r_addend = 0; } loongarch_elf_append_rela (output_bfd, srela, &rela); } skip_got_reloc: /* Mark some specially defined symbols as absolute. */ if (h == htab->elf.hdynamic || h == htab->elf.hgot || h == htab->elf.hplt) sym->st_shndx = SHN_ABS; return true; } /* Finish up the dynamic sections. */ static bool loongarch_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, bfd *dynobj, asection *sdyn) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); size_t dynsize = bed->s->sizeof_dyn, skipped_size = 0; bfd_byte *dyncon, *dynconend; dynconend = sdyn->contents + sdyn->size; for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) { Elf_Internal_Dyn dyn; asection *s; int skipped = 0; bed->s->swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { case DT_PLTGOT: s = htab->elf.sgotplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_JMPREL: s = htab->elf.srelplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_PLTRELSZ: s = htab->elf.srelplt; dyn.d_un.d_val = s->size; break; case DT_TEXTREL: if ((info->flags & DF_TEXTREL) == 0) skipped = 1; break; case DT_FLAGS: if ((info->flags & DF_TEXTREL) == 0) dyn.d_un.d_val &= ~DF_TEXTREL; break; } if (skipped) skipped_size += dynsize; else bed->s->swap_dyn_out (output_bfd, &dyn, dyncon - skipped_size); } /* Wipe out any trailing entries if we shifted down a dynamic tag. */ memset (dyncon - skipped_size, 0, skipped_size); return true; } /* Finish up local dynamic symbol handling. We set the contents of various dynamic sections here. */ static int elfNN_loongarch_finish_local_dynamic_symbol (void **slot, void *inf) { struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) *slot; struct bfd_link_info *info = (struct bfd_link_info *) inf; return loongarch_elf_finish_dynamic_symbol (info->output_bfd, info, h, NULL); } /* Value of struct elf_backend_data->elf_backend_output_arch_local_syms, this function is called before elf_link_sort_relocs. So relocation R_LARCH_IRELATIVE for local ifunc can be append to .rela.dyn (.rela.got) by loongarch_elf_append_rela. */ static bool elf_loongarch_output_arch_local_syms (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, void *flaginfo ATTRIBUTE_UNUSED, int (*func) (void *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *) ATTRIBUTE_UNUSED) { struct loongarch_elf_link_hash_table *htab = loongarch_elf_hash_table (info); if (htab == NULL) return false; /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ htab_traverse (htab->loc_hash_table, elfNN_loongarch_finish_local_dynamic_symbol, info); return true; } static bool loongarch_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sdyn, *plt, *gotplt = NULL; struct loongarch_elf_link_hash_table *htab; htab = loongarch_elf_hash_table (info); BFD_ASSERT (htab); dynobj = htab->elf.dynobj; sdyn = bfd_get_linker_section (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { BFD_ASSERT (htab->elf.splt && sdyn); if (!loongarch_finish_dyn (output_bfd, info, dynobj, sdyn)) return false; } plt = htab->elf.splt; gotplt = htab->elf.sgotplt; if (plt && 0 < plt->size) { size_t i; uint32_t plt_header[PLT_HEADER_INSNS]; if (!loongarch_make_plt_header (sec_addr (gotplt), sec_addr (plt), plt_header)) return false; for (i = 0; i < PLT_HEADER_INSNS; i++) bfd_put_32 (output_bfd, plt_header[i], plt->contents + 4 * i); elf_section_data (plt->output_section)->this_hdr.sh_entsize = PLT_ENTRY_SIZE; } if (htab->elf.sgotplt) { asection *output_section = htab->elf.sgotplt->output_section; if (bfd_is_abs_section (output_section)) { _bfd_error_handler (_("discarded output section: `%pA'"), htab->elf.sgotplt); return false; } if (0 < htab->elf.sgotplt->size) { /* Write the first two entries in .got.plt, needed for the dynamic linker. */ bfd_put_NN (output_bfd, MINUS_ONE, htab->elf.sgotplt->contents); bfd_put_NN (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); } elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; } if (htab->elf.sgot) { asection *output_section = htab->elf.sgot->output_section; if (0 < htab->elf.sgot->size) { /* Set the first entry in the global offset table to the address of the dynamic section. */ bfd_vma val = sdyn ? sec_addr (sdyn) : 0; bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); } elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; } return true; } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ static bfd_vma loongarch_elf_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; } static enum elf_reloc_type_class loongarch_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, const asection *rel_sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *rela) { struct loongarch_elf_link_hash_table *htab; htab = loongarch_elf_hash_table (info); if (htab->elf.dynsym != NULL && htab->elf.dynsym->contents != NULL) { /* Check relocation against STT_GNU_IFUNC symbol if there are dynamic symbols. */ bfd *abfd = info->output_bfd; const struct elf_backend_data *bed = get_elf_backend_data (abfd); unsigned long r_symndx = ELFNN_R_SYM (rela->r_info); if (r_symndx != STN_UNDEF) { Elf_Internal_Sym sym; if (!bed->s->swap_symbol_in (abfd, htab->elf.dynsym->contents + r_symndx * bed->s->sizeof_sym, 0, &sym)) { /* xgettext:c-format */ _bfd_error_handler (_("%pB symbol number %lu references" " nonexistent SHT_SYMTAB_SHNDX section"), abfd, r_symndx); /* Ideally an error class should be returned here. */ } else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC) return reloc_class_ifunc; } } switch (ELFNN_R_TYPE (rela->r_info)) { case R_LARCH_IRELATIVE: return reloc_class_ifunc; case R_LARCH_RELATIVE: return reloc_class_relative; case R_LARCH_JUMP_SLOT: return reloc_class_plt; case R_LARCH_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Copy the extra info we tack onto an elf_link_hash_entry. */ static void loongarch_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct elf_link_hash_entry *edir, *eind; edir = dir; eind = ind; if (eind->dyn_relocs != NULL) { if (edir->dyn_relocs != NULL) { struct elf_dyn_relocs **pp; struct elf_dyn_relocs *p; /* Add reloc counts against the indirect sym to the direct sym list. Merge any entries against the same section. */ for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) { struct elf_dyn_relocs *q; for (q = edir->dyn_relocs; q != NULL; q = q->next) if (q->sec == p->sec) { q->pc_count += p->pc_count; q->count += p->count; *pp = p->next; break; } if (q == NULL) pp = &p->next; } *pp = edir->dyn_relocs; } edir->dyn_relocs = eind->dyn_relocs; eind->dyn_relocs = NULL; } if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount < 0) { loongarch_elf_hash_entry(edir)->tls_type = loongarch_elf_hash_entry(eind)->tls_type; loongarch_elf_hash_entry(eind)->tls_type = GOT_UNKNOWN; } _bfd_elf_link_hash_copy_indirect (info, dir, ind); } #define PRSTATUS_SIZE 0x1d8 #define PRSTATUS_OFFSET_PR_CURSIG 0xc #define PRSTATUS_OFFSET_PR_PID 0x20 #define ELF_GREGSET_T_SIZE 0x168 #define PRSTATUS_OFFSET_PR_REG 0x70 /* Support for core dump NOTE sections. */ static bool loongarch_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return false; /* The sizeof (struct elf_prstatus) on Linux/LoongArch. */ case PRSTATUS_SIZE: /* pr_cursig */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); /* pr_pid */ elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, note->descpos + PRSTATUS_OFFSET_PR_REG); } #define PRPSINFO_SIZE 0x88 #define PRPSINFO_OFFSET_PR_PID 0x18 #define PRPSINFO_OFFSET_PR_FNAME 0x28 #define PRPSINFO_SIZEOF_PR_FNAME 0x10 #define PRPSINFO_OFFSET_PR_PS_ARGS 0x38 #define PRPSINFO_SIZEOF_PR_PS_ARGS 0x50 static bool loongarch_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { switch (note->descsz) { default: return false; /* The sizeof (prpsinfo_t) on Linux/LoongArch. */ case PRPSINFO_SIZE: /* pr_pid */ elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); /* pr_fname */ elf_tdata (abfd)->core->program = _bfd_elfcore_strndup (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, PRPSINFO_SIZEOF_PR_FNAME); /* pr_psargs */ elf_tdata (abfd)->core->command = _bfd_elfcore_strndup (abfd, note->descdata + PRPSINFO_OFFSET_PR_PS_ARGS, PRPSINFO_SIZEOF_PR_PS_ARGS); break; } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ { char *command = elf_tdata (abfd)->core->command; int n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; } return true; } /* Set the right mach type. */ static bool loongarch_elf_object_p (bfd *abfd) { /* There are only two mach types in LoongArch currently. */ if (strcmp (abfd->xvec->name, "elf64-loongarch") == 0) bfd_default_set_arch_mach (abfd, bfd_arch_loongarch, bfd_mach_loongarch64); else bfd_default_set_arch_mach (abfd, bfd_arch_loongarch, bfd_mach_loongarch32); return true; } static asection * loongarch_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { if (h != NULL) switch (ELFNN_R_TYPE (rel->r_info)) { case R_LARCH_GNU_VTINHERIT: case R_LARCH_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For executable PLT slots where the executable never takes the address of those functions, the function symbols are not added to the hash table. */ static bool elf_loongarch64_hash_symbol (struct elf_link_hash_entry *h) { if (h->plt.offset != (bfd_vma) -1 && !h->def_regular && !h->pointer_equality_needed) return false; return _bfd_elf_hash_symbol (h); } #define TARGET_LITTLE_SYM loongarch_elfNN_vec #define TARGET_LITTLE_NAME "elfNN-loongarch" #define ELF_ARCH bfd_arch_loongarch #define ELF_TARGET_ID LARCH_ELF_DATA #define ELF_MACHINE_CODE EM_LOONGARCH #define ELF_MINPAGESIZE 0x1000 #define ELF_MAXPAGESIZE 0x10000 #define ELF_COMMONPAGESIZE 0x4000 #define bfd_elfNN_bfd_reloc_type_lookup loongarch_reloc_type_lookup #define bfd_elfNN_bfd_link_hash_table_create \ loongarch_elf_link_hash_table_create #define bfd_elfNN_bfd_reloc_name_lookup loongarch_reloc_name_lookup #define elf_info_to_howto_rel NULL /* Fall through to elf_info_to_howto. */ #define elf_info_to_howto loongarch_info_to_howto_rela #define bfd_elfNN_mkobject \ elfNN_loongarch_object #define bfd_elfNN_bfd_merge_private_bfd_data \ elfNN_loongarch_merge_private_bfd_data #define elf_backend_reloc_type_class loongarch_reloc_type_class #define elf_backend_copy_indirect_symbol loongarch_elf_copy_indirect_symbol #define elf_backend_create_dynamic_sections \ loongarch_elf_create_dynamic_sections #define elf_backend_check_relocs loongarch_elf_check_relocs #define elf_backend_adjust_dynamic_symbol loongarch_elf_adjust_dynamic_symbol #define elf_backend_late_size_sections loongarch_elf_late_size_sections #define elf_backend_relocate_section loongarch_elf_relocate_section #define elf_backend_finish_dynamic_symbol loongarch_elf_finish_dynamic_symbol #define elf_backend_output_arch_local_syms \ elf_loongarch_output_arch_local_syms #define elf_backend_finish_dynamic_sections \ loongarch_elf_finish_dynamic_sections #define elf_backend_object_p loongarch_elf_object_p #define elf_backend_gc_mark_hook loongarch_elf_gc_mark_hook #define elf_backend_plt_sym_val loongarch_elf_plt_sym_val #define elf_backend_grok_prstatus loongarch_elf_grok_prstatus #define elf_backend_grok_psinfo loongarch_elf_grok_psinfo #define elf_backend_hash_symbol elf_loongarch64_hash_symbol #define bfd_elfNN_bfd_relax_section loongarch_elf_relax_section #define elf_backend_size_relative_relocs loongarch_elf_size_relative_relocs #define elf_backend_finish_relative_relocs \ loongarch_elf_finish_relative_relocs #define bfd_elfNN_new_section_hook loongarch_elf_new_section_hook #define elf_backend_dtrel_excludes_plt 1 #include "elfNN-target.h"