/* tc-arm.c -- Assemble for the ARM Copyright (C) 1994-2024 Free Software Foundation, Inc. Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org) Modified by David Taylor (dtaylor@armltd.co.uk) Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com) Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com) Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com) This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "as.h" #include #include #define NO_RELOC 0 #include "safe-ctype.h" #include "subsegs.h" #include "obstack.h" #include "libiberty.h" #include "opcode/arm.h" #include "cpu-arm.h" #ifdef OBJ_ELF #include "elf/arm.h" #include "dw2gencfi.h" #endif #include "dwarf2dbg.h" #ifdef OBJ_ELF /* Must be at least the size of the largest unwind opcode (currently two). */ #define ARM_OPCODE_CHUNK_SIZE 8 /* This structure holds the unwinding state. */ static struct { symbolS * proc_start; symbolS * table_entry; symbolS * personality_routine; int personality_index; /* The segment containing the function. */ segT saved_seg; subsegT saved_subseg; /* Opcodes generated from this function. */ unsigned char * opcodes; int opcode_count; int opcode_alloc; /* The number of bytes pushed to the stack. */ offsetT frame_size; /* We don't add stack adjustment opcodes immediately so that we can merge multiple adjustments. We can also omit the final adjustment when using a frame pointer. */ offsetT pending_offset; /* These two fields are set by both unwind_movsp and unwind_setfp. They hold the reg+offset to use when restoring sp from a frame pointer. */ offsetT fp_offset; int fp_reg; /* Nonzero if an unwind_setfp directive has been seen. */ unsigned fp_used:1; /* Nonzero if the last opcode restores sp from fp_reg. */ unsigned sp_restored:1; } unwind; /* Whether --fdpic was given. */ static int arm_fdpic; #endif /* OBJ_ELF */ /* Results from operand parsing worker functions. */ typedef enum { PARSE_OPERAND_SUCCESS, PARSE_OPERAND_FAIL, PARSE_OPERAND_FAIL_NO_BACKTRACK } parse_operand_result; enum arm_float_abi { ARM_FLOAT_ABI_HARD, ARM_FLOAT_ABI_SOFTFP, ARM_FLOAT_ABI_SOFT }; /* Types of processor to assemble for. */ #ifndef CPU_DEFAULT /* The code that was here used to select a default CPU depending on compiler pre-defines which were only present when doing native builds, thus changing gas' default behaviour depending upon the build host. If you have a target that requires a default CPU option then the you should define CPU_DEFAULT here. */ #endif /* Perform range checks on positive and negative overflows by checking if the VALUE given fits within the range of an BITS sized immediate. */ static bool out_of_range_p (offsetT value, offsetT bits) { gas_assert (bits < (offsetT)(sizeof (value) * 8)); return (value & ~((1 << bits)-1)) && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1)); } #ifndef FPU_DEFAULT # ifdef TE_LINUX # define FPU_DEFAULT FPU_NONE # elif defined (TE_NetBSD) # ifdef OBJ_ELF # define FPU_DEFAULT FPU_ARCH_SOFTVFP /* Soft-float, but VFP order. */ # else /* Legacy a.out format. */ # define FPU_DEFAULT FPU_NONE /* Soft-float, no FPU. */ # endif # elif defined (TE_VXWORKS) # define FPU_DEFAULT FPU_ARCH_SOFTVFP /* Soft-float, VFP order. */ # else /* For backwards compatibility, default to no-fpu so that we don't get silent code changes of FP literal data. */ # define FPU_DEFAULT FPU_NONE # endif #endif /* ifndef FPU_DEFAULT */ #define streq(a, b) (strcmp (a, b) == 0) /* Current set of feature bits available (CPU+FPU). Different from selected_cpu + selected_fpu in case of autodetection since the CPU feature bits are then all set. */ static arm_feature_set cpu_variant; /* Feature bits used in each execution state. Used to set build attribute (in particular Tag_*_ISA_use) in CPU autodetection mode. */ static arm_feature_set arm_arch_used; static arm_feature_set thumb_arch_used; /* Flags stored in private area of BFD structure. */ static int uses_apcs_26 = false; static int atpcs = false; static int support_interwork = false; static int uses_apcs_float = false; static int pic_code = false; static int fix_v4bx = false; /* Warn on using deprecated features. */ static int warn_on_deprecated = true; static int warn_on_restrict_it = false; /* Understand CodeComposer Studio assembly syntax. */ bool codecomposer_syntax = false; /* Variables that we set while parsing command-line options. Once all options have been read we re-process these values to set the real assembly flags. */ /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1 instead of -mcpu=arm1). */ static const arm_feature_set *legacy_cpu = NULL; static const arm_feature_set *legacy_fpu = NULL; /* CPU, extension and FPU feature bits selected by -mcpu. */ static const arm_feature_set *mcpu_cpu_opt = NULL; static arm_feature_set *mcpu_ext_opt = NULL; static const arm_feature_set *mcpu_fpu_opt = NULL; /* CPU, extension and FPU feature bits selected by -march. */ static const arm_feature_set *march_cpu_opt = NULL; static arm_feature_set *march_ext_opt = NULL; static const arm_feature_set *march_fpu_opt = NULL; /* Feature bits selected by -mfpu. */ static const arm_feature_set *mfpu_opt = NULL; /* Constants for known architecture features. */ static const arm_feature_set fpu_default = FPU_DEFAULT; static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1; static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2; static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3; static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1; static const arm_feature_set fpu_any_hard = FPU_ANY_HARD; static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE; #ifdef CPU_DEFAULT static const arm_feature_set cpu_default = CPU_DEFAULT; #endif static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1); static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2); static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S); static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3); static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M); static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4); static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T); static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5); static const arm_feature_set arm_ext_v4t_5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5); static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T); static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E); static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP); static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J); static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6); static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K); static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2); /* Only for compatability of hint instructions. */ static const arm_feature_set arm_ext_v6k_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2); static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM); static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP); static const arm_feature_set arm_ext_barrier = ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER); static const arm_feature_set arm_ext_msr = ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR); static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV); static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7); static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A); static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R); static const arm_feature_set arm_ext_v8r = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8R); #ifdef OBJ_ELF static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M); #endif static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8); static const arm_feature_set arm_ext_m = ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M, ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN); static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP); static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC); static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS); static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV); static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT); static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN); static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M); static const arm_feature_set arm_ext_v8m_main = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN); static const arm_feature_set arm_ext_v8_1m_main = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN); /* Instructions in ARMv8-M only found in M profile architectures. */ static const arm_feature_set arm_ext_v8m_m_only = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN); static const arm_feature_set arm_ext_v6t2_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M); /* Instructions shared between ARMv8-A and ARMv8-M. */ static const arm_feature_set arm_ext_atomics = ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS); #ifdef OBJ_ELF /* DSP instructions Tag_DSP_extension refers to. */ static const arm_feature_set arm_ext_dsp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP); #endif static const arm_feature_set arm_ext_ras = ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS); /* FP16 instructions. */ static const arm_feature_set arm_ext_fp16 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST); static const arm_feature_set arm_ext_fp16_fml = ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML); static const arm_feature_set arm_ext_v8_2 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A); static const arm_feature_set arm_ext_v8_3 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A); static const arm_feature_set arm_ext_sb = ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB); static const arm_feature_set arm_ext_predres = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES); static const arm_feature_set arm_ext_bf16 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16); static const arm_feature_set arm_ext_i8mm = ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM); static const arm_feature_set arm_ext_crc = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC); static const arm_feature_set arm_ext_cde = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE); static const arm_feature_set arm_ext_cde0 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE0); static const arm_feature_set arm_ext_cde1 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE1); static const arm_feature_set arm_ext_cde2 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE2); static const arm_feature_set arm_ext_cde3 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE3); static const arm_feature_set arm_ext_cde4 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE4); static const arm_feature_set arm_ext_cde5 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE5); static const arm_feature_set arm_ext_cde6 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE6); static const arm_feature_set arm_ext_cde7 = ARM_FEATURE_CORE_HIGH (ARM_EXT2_CDE7); static const arm_feature_set arm_arch_any = ARM_ANY; static const arm_feature_set fpu_any = FPU_ANY; static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1); static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2; static const arm_feature_set arm_arch_none = ARM_ARCH_NONE; static const arm_feature_set arm_cext_iwmmxt2 = ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2); static const arm_feature_set arm_cext_iwmmxt = ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT); static const arm_feature_set arm_cext_xscale = ARM_FEATURE_COPROC (ARM_CEXT_XSCALE); static const arm_feature_set fpu_vfp_ext_v1xd = ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD); static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE_COPROC (FPU_VFP_EXT_V1); static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE_COPROC (FPU_VFP_EXT_V2); static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD); static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE_COPROC (FPU_VFP_EXT_V3); static const arm_feature_set fpu_vfp_ext_d32 = ARM_FEATURE_COPROC (FPU_VFP_EXT_D32); static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE_COPROC (FPU_NEON_EXT_V1); static const arm_feature_set fpu_vfp_v3_or_neon_ext = ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3); static const arm_feature_set mve_ext = ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE); static const arm_feature_set mve_fp_ext = ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE_FP); /* Note: This has more than one bit set, which means using it with mark_feature_used (which returns if *any* of the bits are set in the current cpu variant) can give surprising results. */ static const arm_feature_set armv8m_fp = ARM_FEATURE_COPROC (FPU_VFP_V5_SP_D16); #ifdef OBJ_ELF static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16); static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA); #endif static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA); static const arm_feature_set fpu_vfp_ext_armv8 = ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8); static const arm_feature_set fpu_vfp_ext_armv8xd = ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD); static const arm_feature_set fpu_neon_ext_armv8 = ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8); static const arm_feature_set fpu_crypto_ext_armv8 = ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8); static const arm_feature_set fpu_neon_ext_v8_1 = ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA); static const arm_feature_set fpu_neon_ext_dotprod = ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD); static const arm_feature_set pacbti_ext = ARM_FEATURE_CORE_HIGH_HIGH (ARM_EXT3_PACBTI); static int mfloat_abi_opt = -1; /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch directive. */ static arm_feature_set selected_arch = ARM_ARCH_NONE; /* Extension feature bits selected by the last -mcpu/-march or .arch_extension directive. */ static arm_feature_set selected_ext = ARM_ARCH_NONE; /* Feature bits selected by the last -mcpu/-march or by the combination of the last .cpu/.arch directive .arch_extension directives since that directive. */ static arm_feature_set selected_cpu = ARM_ARCH_NONE; /* FPU feature bits selected by the last -mfpu or .fpu directive. */ static arm_feature_set selected_fpu = FPU_NONE; /* Feature bits selected by the last .object_arch directive. */ static arm_feature_set selected_object_arch = ARM_ARCH_NONE; /* Must be long enough to hold any of the names in arm_cpus. */ static const struct arm_ext_table * selected_ctx_ext_table = NULL; static char selected_cpu_name[20]; extern FLONUM_TYPE generic_floating_point_number; /* Return if no cpu was selected on command-line. */ static bool no_cpu_selected (void) { return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none); } #ifdef OBJ_ELF # ifdef EABI_DEFAULT static int meabi_flags = EABI_DEFAULT; # else static int meabi_flags = EF_ARM_EABI_UNKNOWN; # endif static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES]; bool arm_is_eabi (void) { return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4); } #endif #ifdef OBJ_ELF /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ symbolS * GOT_symbol; #endif /* 0: assemble for ARM, 1: assemble for Thumb, 2: assemble for Thumb even though target CPU does not support thumb instructions. */ static int thumb_mode = 0; /* A value distinct from the possible values for thumb_mode that we can use to record whether thumb_mode has been copied into the tc_frag_data field of a frag. */ #define MODE_RECORDED (1 << 4) /* Specifies the intrinsic IT insn behavior mode. */ enum implicit_it_mode { IMPLICIT_IT_MODE_NEVER = 0x00, IMPLICIT_IT_MODE_ARM = 0x01, IMPLICIT_IT_MODE_THUMB = 0x02, IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB) }; static int implicit_it_mode = IMPLICIT_IT_MODE_ARM; /* If unified_syntax is true, we are processing the new unified ARM/Thumb syntax. Important differences from the old ARM mode: - Immediate operands do not require a # prefix. - Conditional affixes always appear at the end of the instruction. (For backward compatibility, those instructions that formerly had them in the middle, continue to accept them there.) - The IT instruction may appear, and if it does is validated against subsequent conditional affixes. It does not generate machine code. Important differences from the old Thumb mode: - Immediate operands do not require a # prefix. - Most of the V6T2 instructions are only available in unified mode. - The .N and .W suffixes are recognized and honored (it is an error if they cannot be honored). - All instructions set the flags if and only if they have an 's' affix. - Conditional affixes may be used. They are validated against preceding IT instructions. Unlike ARM mode, you cannot use a conditional affix except in the scope of an IT instruction. */ static bool unified_syntax = false; /* An immediate operand can start with #, and ld*, st*, pld operands can contain [ and ]. We need to tell APP not to elide whitespace before a [, which can appear as the first operand for pld. Likewise, a { can appear as the first operand for push, pop, vld*, etc. */ const char arm_symbol_chars[] = "#[]{}"; enum neon_el_type { NT_invtype, NT_untyped, NT_integer, NT_float, NT_poly, NT_signed, NT_bfloat, NT_unsigned }; struct neon_type_el { enum neon_el_type type; unsigned size; }; #define NEON_MAX_TYPE_ELS 5 struct neon_type { struct neon_type_el el[NEON_MAX_TYPE_ELS]; unsigned elems; }; enum pred_instruction_type { OUTSIDE_PRED_INSN, INSIDE_VPT_INSN, INSIDE_IT_INSN, INSIDE_IT_LAST_INSN, IF_INSIDE_IT_LAST_INSN, /* Either outside or inside; if inside, should be the last one. */ NEUTRAL_IT_INSN, /* This could be either inside or outside, i.e. BKPT and NOP. */ IT_INSN, /* The IT insn has been parsed. */ VPT_INSN, /* The VPT/VPST insn has been parsed. */ MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without a predication code. */ MVE_UNPREDICABLE_INSN, /* MVE instruction that is non-predicable. */ }; /* The maximum number of operands we need. */ #define ARM_IT_MAX_OPERANDS 6 #define ARM_IT_MAX_RELOCS 3 struct arm_it { const char * error; unsigned long instruction; unsigned int size; unsigned int size_req; unsigned int cond; /* "uncond_value" is set to the value in place of the conditional field in unconditional versions of the instruction, or -1u if nothing is appropriate. */ unsigned int uncond_value; struct neon_type vectype; /* This does not indicate an actual NEON instruction, only that the mnemonic accepts neon-style type suffixes. */ int is_neon; /* Set to the opcode if the instruction needs relaxation. Zero if the instruction is not relaxed. */ unsigned long relax; struct { bfd_reloc_code_real_type type; expressionS exp; int pc_rel; } relocs[ARM_IT_MAX_RELOCS]; enum pred_instruction_type pred_insn_type; struct { unsigned reg; signed int imm; struct neon_type_el vectype; unsigned present : 1; /* Operand present. */ unsigned isreg : 1; /* Operand was a register. */ unsigned immisreg : 2; /* .imm field is a second register. 0: imm, 1: gpr, 2: MVE Q-register. */ unsigned isscalar : 2; /* Operand is a (SIMD) scalar: 0) not scalar, 1) Neon scalar, 2) MVE scalar. */ unsigned immisalign : 1; /* Immediate is an alignment specifier. */ unsigned immisfloat : 1; /* Immediate was parsed as a float. */ /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV instructions. This allows us to disambiguate ARM <-> vector insns. */ unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */ unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */ unsigned isquad : 1; /* Operand is SIMD quad register. */ unsigned issingle : 1; /* Operand is VFP single-precision register. */ unsigned iszr : 1; /* Operand is ZR register. */ unsigned hasreloc : 1; /* Operand has relocation suffix. */ unsigned writeback : 1; /* Operand has trailing ! */ unsigned preind : 1; /* Preindexed address. */ unsigned postind : 1; /* Postindexed address. */ unsigned negative : 1; /* Index register was negated. */ unsigned shifted : 1; /* Shift applied to operation. */ unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */ } operands[ARM_IT_MAX_OPERANDS]; }; static struct arm_it inst; #define NUM_FLOAT_VALS 8 const char * fp_const[] = { "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0 }; LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS]; #define FAIL (-1) #define SUCCESS (0) #define SUFF_S 1 #define SUFF_D 2 #define SUFF_E 3 #define SUFF_P 4 #define CP_T_X 0x00008000 #define CP_T_Y 0x00400000 #define CONDS_BIT 0x00100000 #define LOAD_BIT 0x00100000 #define DOUBLE_LOAD_FLAG 0x00000001 struct asm_cond { const char * template_name; unsigned long value; }; #define COND_ALWAYS 0xE struct asm_psr { const char * template_name; unsigned long field; }; struct asm_barrier_opt { const char * template_name; unsigned long value; const arm_feature_set arch; }; /* The bit that distinguishes CPSR and SPSR. */ #define SPSR_BIT (1 << 22) /* The individual PSR flag bits. */ #define PSR_c (1 << 16) #define PSR_x (1 << 17) #define PSR_s (1 << 18) #define PSR_f (1 << 19) struct reloc_entry { const char * name; bfd_reloc_code_real_type reloc; }; enum vfp_reg_pos { VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn, VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn }; enum vfp_ldstm_type { VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX }; /* Bits for DEFINED field in neon_typed_alias. */ #define NTA_HASTYPE 1 #define NTA_HASINDEX 2 struct neon_typed_alias { unsigned char defined; unsigned char index; struct neon_type_el eltype; }; /* ARM register categories. This includes coprocessor numbers and various architecture extensions' registers. Each entry should have an error message in reg_expected_msgs below. */ enum arm_reg_type { REG_TYPE_RN, REG_TYPE_CP, REG_TYPE_CN, REG_TYPE_FN, REG_TYPE_VFS, REG_TYPE_VFD, REG_TYPE_NQ, REG_TYPE_VFSD, REG_TYPE_NDQ, REG_TYPE_NSD, REG_TYPE_NSDQ, REG_TYPE_VFC, REG_TYPE_MVF, REG_TYPE_MVD, REG_TYPE_MVFX, REG_TYPE_MVDX, REG_TYPE_MVAX, REG_TYPE_MQ, REG_TYPE_DSPSC, REG_TYPE_MMXWR, REG_TYPE_MMXWC, REG_TYPE_MMXWCG, REG_TYPE_XSCALE, REG_TYPE_RNB, REG_TYPE_ZR, REG_TYPE_PSEUDO }; /* Structure for a hash table entry for a register. If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra information which states whether a vector type or index is specified (for a register alias created with .dn or .qn). Otherwise NEON should be NULL. */ struct reg_entry { const char * name; unsigned int number; unsigned char type; unsigned char builtin; struct neon_typed_alias * neon; }; /* Diagnostics used when we don't get a register of the expected type. */ const char * const reg_expected_msgs[] = { [REG_TYPE_RN] = N_("ARM register expected"), [REG_TYPE_CP] = N_("bad or missing co-processor number"), [REG_TYPE_CN] = N_("co-processor register expected"), [REG_TYPE_VFS] = N_("VFP single precision register expected"), [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"), [REG_TYPE_NQ] = N_("Neon quad precision register expected"), [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"), [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"), [REG_TYPE_NSD] = N_("Neon single or double precision register expected"), [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register" " expected"), [REG_TYPE_VFC] = N_("VFP system register expected"), [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"), [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"), [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"), [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"), [REG_TYPE_MQ] = N_("MVE vector register expected"), [REG_TYPE_RNB] = "", [REG_TYPE_ZR] = N_("ZR register expected"), [REG_TYPE_PSEUDO] = N_("Pseudo register expected"), }; /* Some well known registers that we refer to directly elsewhere. */ #define REG_R12 12 #define REG_SP 13 #define REG_LR 14 #define REG_PC 15 #define REG_RA_AUTH_CODE 143 /* ARM instructions take 4bytes in the object file, Thumb instructions take 2: */ #define INSN_SIZE 4 struct asm_opcode { /* Basic string to match. */ const char * template_name; /* Parameters to instruction. */ unsigned int operands[8]; /* Conditional tag - see opcode_lookup. */ unsigned int tag : 4; /* Basic instruction code. */ unsigned int avalue; /* Thumb-format instruction code. */ unsigned int tvalue; /* Which architecture variant provides this instruction. */ const arm_feature_set * avariant; const arm_feature_set * tvariant; /* Function to call to encode instruction in ARM format. */ void (* aencode) (void); /* Function to call to encode instruction in Thumb format. */ void (* tencode) (void); /* Indicates whether this instruction may be vector predicated. */ unsigned int mayBeVecPred : 1; }; /* Defines for various bits that we will want to toggle. */ #define INST_IMMEDIATE 0x02000000 #define OFFSET_REG 0x02000000 #define HWOFFSET_IMM 0x00400000 #define SHIFT_BY_REG 0x00000010 #define PRE_INDEX 0x01000000 #define INDEX_UP 0x00800000 #define WRITE_BACK 0x00200000 #define LDM_TYPE_2_OR_3 0x00400000 #define CPSI_MMOD 0x00020000 #define LITERAL_MASK 0xf000f000 #define OPCODE_MASK 0xfe1fffff #define V4_STR_BIT 0x00000020 #define VLDR_VMOV_SAME 0x0040f000 #define T2_SUBS_PC_LR 0xf3de8f00 #define DATA_OP_SHIFT 21 #define SBIT_SHIFT 20 #define T2_OPCODE_MASK 0xfe1fffff #define T2_DATA_OP_SHIFT 21 #define T2_SBIT_SHIFT 20 #define A_COND_MASK 0xf0000000 #define A_PUSH_POP_OP_MASK 0x0fff0000 /* Opcodes for pushing/poping registers to/from the stack. */ #define A1_OPCODE_PUSH 0x092d0000 #define A2_OPCODE_PUSH 0x052d0004 #define A2_OPCODE_POP 0x049d0004 /* Codes to distinguish the arithmetic instructions. */ #define OPCODE_AND 0 #define OPCODE_EOR 1 #define OPCODE_SUB 2 #define OPCODE_RSB 3 #define OPCODE_ADD 4 #define OPCODE_ADC 5 #define OPCODE_SBC 6 #define OPCODE_RSC 7 #define OPCODE_TST 8 #define OPCODE_TEQ 9 #define OPCODE_CMP 10 #define OPCODE_CMN 11 #define OPCODE_ORR 12 #define OPCODE_MOV 13 #define OPCODE_BIC 14 #define OPCODE_MVN 15 #define T2_OPCODE_AND 0 #define T2_OPCODE_BIC 1 #define T2_OPCODE_ORR 2 #define T2_OPCODE_ORN 3 #define T2_OPCODE_EOR 4 #define T2_OPCODE_ADD 8 #define T2_OPCODE_ADC 10 #define T2_OPCODE_SBC 11 #define T2_OPCODE_SUB 13 #define T2_OPCODE_RSB 14 #define T_OPCODE_MUL 0x4340 #define T_OPCODE_TST 0x4200 #define T_OPCODE_CMN 0x42c0 #define T_OPCODE_NEG 0x4240 #define T_OPCODE_MVN 0x43c0 #define T_OPCODE_ADD_R3 0x1800 #define T_OPCODE_SUB_R3 0x1a00 #define T_OPCODE_ADD_HI 0x4400 #define T_OPCODE_ADD_ST 0xb000 #define T_OPCODE_SUB_ST 0xb080 #define T_OPCODE_ADD_SP 0xa800 #define T_OPCODE_ADD_PC 0xa000 #define T_OPCODE_ADD_I8 0x3000 #define T_OPCODE_SUB_I8 0x3800 #define T_OPCODE_ADD_I3 0x1c00 #define T_OPCODE_SUB_I3 0x1e00 #define T_OPCODE_ASR_R 0x4100 #define T_OPCODE_LSL_R 0x4080 #define T_OPCODE_LSR_R 0x40c0 #define T_OPCODE_ROR_R 0x41c0 #define T_OPCODE_ASR_I 0x1000 #define T_OPCODE_LSL_I 0x0000 #define T_OPCODE_LSR_I 0x0800 #define T_OPCODE_MOV_I8 0x2000 #define T_OPCODE_CMP_I8 0x2800 #define T_OPCODE_CMP_LR 0x4280 #define T_OPCODE_MOV_HR 0x4600 #define T_OPCODE_CMP_HR 0x4500 #define T_OPCODE_LDR_PC 0x4800 #define T_OPCODE_LDR_SP 0x9800 #define T_OPCODE_STR_SP 0x9000 #define T_OPCODE_LDR_IW 0x6800 #define T_OPCODE_STR_IW 0x6000 #define T_OPCODE_LDR_IH 0x8800 #define T_OPCODE_STR_IH 0x8000 #define T_OPCODE_LDR_IB 0x7800 #define T_OPCODE_STR_IB 0x7000 #define T_OPCODE_LDR_RW 0x5800 #define T_OPCODE_STR_RW 0x5000 #define T_OPCODE_LDR_RH 0x5a00 #define T_OPCODE_STR_RH 0x5200 #define T_OPCODE_LDR_RB 0x5c00 #define T_OPCODE_STR_RB 0x5400 #define T_OPCODE_PUSH 0xb400 #define T_OPCODE_POP 0xbc00 #define T_OPCODE_BRANCH 0xe000 #define T_OPCODE_STMFD 0xe9000000 #define THUMB_SIZE 2 /* Size of thumb instruction. */ #define THUMB_PP_PC_LR 0x0100 #define THUMB_LOAD_BIT 0x0800 #define THUMB2_LOAD_BIT 0x00100000 #define BAD_SYNTAX _("syntax error") #define BAD_ARGS _("bad arguments to instruction") #define BAD_SP _("r13 not allowed here") #define BAD_PC _("r15 not allowed here") #define BAD_ODD _("Odd register not allowed here") #define BAD_EVEN _("Even register not allowed here") #define BAD_COND _("instruction cannot be conditional") #define BAD_OVERLAP _("registers may not be the same") #define BAD_HIREG _("lo register required") #define BAD_THUMB32 _("instruction not supported in Thumb16 mode") #define BAD_ADDR_MODE _("instruction does not accept this addressing mode") #define BAD_BRANCH _("branch must be last instruction in IT block") #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2") #define BAD_NO_VPT _("instruction not allowed in VPT block") #define BAD_NOT_IT _("instruction not allowed in IT block") #define BAD_NOT_VPT _("instruction missing MVE vector predication code") #define BAD_FPU _("selected FPU does not support instruction") #define BAD_OUT_IT _("thumb conditional instruction should be in IT block") #define BAD_OUT_VPT \ _("vector predicated instruction should be in VPT/VPST block") #define BAD_IT_COND _("incorrect condition in IT block") #define BAD_VPT_COND _("incorrect condition in VPT/VPST block") #define BAD_IT_IT _("IT falling in the range of a previous IT block") #define MISSING_FNSTART _("missing .fnstart before unwinding directive") #define BAD_PC_ADDRESSING \ _("cannot use register index with PC-relative addressing") #define BAD_PC_WRITEBACK \ _("cannot use writeback with PC-relative addressing") #define BAD_RANGE _("branch out of range") #define BAD_FP16 _("selected processor does not support fp16 instruction") #define BAD_BF16 _("selected processor does not support bf16 instruction") #define BAD_CDE _("selected processor does not support cde instruction") #define BAD_CDE_COPROC _("coprocessor for insn is not enabled for cde") #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour") #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only") #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \ "block") #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \ "block") #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \ " operand") #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \ " operand") #define BAD_SIMD_TYPE _("bad type in SIMD instruction") #define BAD_MVE_AUTO \ _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \ " use a valid -march or -mcpu option.") #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\ "and source operands makes instruction UNPREDICTABLE") #define BAD_EL_TYPE _("bad element type for instruction") #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected") #define BAD_PACBTI _("selected processor does not support PACBTI extention") static htab_t arm_ops_hsh; static htab_t arm_cond_hsh; static htab_t arm_vcond_hsh; static htab_t arm_shift_hsh; static htab_t arm_psr_hsh; static htab_t arm_v7m_psr_hsh; static htab_t arm_reg_hsh; static htab_t arm_reloc_hsh; static htab_t arm_barrier_opt_hsh; /* Stuff needed to resolve the label ambiguity As: ... label: may differ from: ... label: */ symbolS * last_label_seen; static int label_is_thumb_function_name = false; /* Literal pool structure. Held on a per-section and per-sub-section basis. */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literal_pool { expressionS literals [MAX_LITERAL_POOL_SIZE]; unsigned int next_free_entry; unsigned int id; symbolS * symbol; segT section; subsegT sub_section; #ifdef OBJ_ELF struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE]; #endif struct literal_pool * next; unsigned int alignment; } literal_pool; /* Pointer to a linked list of literal pools. */ literal_pool * list_of_pools = NULL; typedef enum asmfunc_states { OUTSIDE_ASMFUNC, WAITING_ASMFUNC_NAME, WAITING_ENDASMFUNC } asmfunc_states; static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC; #ifdef OBJ_ELF # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred #else static struct current_pred now_pred; #endif static inline int now_pred_compatible (int cond) { return (cond & ~1) == (now_pred.cc & ~1); } static inline int conditional_insn (void) { return inst.cond != COND_ALWAYS; } static int in_pred_block (void); static int handle_pred_state (void); static void force_automatic_it_block_close (void); static void it_fsm_post_encode (void); #define set_pred_insn_type(type) \ do \ { \ inst.pred_insn_type = type; \ if (handle_pred_state () == FAIL) \ return; \ } \ while (0) #define set_pred_insn_type_nonvoid(type, failret) \ do \ { \ inst.pred_insn_type = type; \ if (handle_pred_state () == FAIL) \ return failret; \ } \ while(0) #define set_pred_insn_type_last() \ do \ { \ if (inst.cond == COND_ALWAYS) \ set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \ else \ set_pred_insn_type (INSIDE_IT_LAST_INSN); \ } \ while (0) /* Toggle value[pos]. */ #define TOGGLE_BIT(value, pos) (value ^ (1 << pos)) /* Pure syntax. */ /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. */ char arm_comment_chars[] = "@"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output. */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ const char line_comment_chars[] = "#"; char arm_line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point numbers. */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant. */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh"; /* Prefix characters that indicate the start of an immediate value. */ #define is_immediate_prefix(C) ((C) == '#' || (C) == '$') /* Separator character handling. */ #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0) enum fp_16bit_format { ARM_FP16_FORMAT_IEEE = 0x1, ARM_FP16_FORMAT_ALTERNATIVE = 0x2, ARM_FP16_FORMAT_DEFAULT = 0x3 }; static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT; static inline int skip_past_char (char ** str, char c) { /* PR gas/14987: Allow for whitespace before the expected character. */ skip_whitespace (*str); if (**str == c) { (*str)++; return SUCCESS; } else return FAIL; } #define skip_past_comma(str) skip_past_char (str, ',') /* Arithmetic expressions (possibly involving symbols). */ /* Return TRUE if anything in the expression is a bignum. */ static bool walk_no_bignums (symbolS * sp) { if (symbol_get_value_expression (sp)->X_op == O_big) return true; if (symbol_get_value_expression (sp)->X_add_symbol) { return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol) || (symbol_get_value_expression (sp)->X_op_symbol && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol))); } return false; } static bool in_my_get_expression = false; /* Third argument to my_get_expression. */ #define GE_NO_PREFIX 0 #define GE_IMM_PREFIX 1 #define GE_OPT_PREFIX 2 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit) immediates, as can be used in Neon VMVN and VMOV immediate instructions. */ #define GE_OPT_PREFIX_BIG 3 static int my_get_expression (expressionS * ep, char ** str, int prefix_mode) { char * save_in; /* In unified syntax, all prefixes are optional. */ if (unified_syntax) prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode : GE_OPT_PREFIX; switch (prefix_mode) { case GE_NO_PREFIX: break; case GE_IMM_PREFIX: if (!is_immediate_prefix (**str)) { inst.error = _("immediate expression requires a # prefix"); return FAIL; } (*str)++; break; case GE_OPT_PREFIX: case GE_OPT_PREFIX_BIG: if (is_immediate_prefix (**str)) (*str)++; break; default: abort (); } memset (ep, 0, sizeof (expressionS)); save_in = input_line_pointer; input_line_pointer = *str; in_my_get_expression = true; expression (ep); in_my_get_expression = false; if (ep->X_op == O_illegal || ep->X_op == O_absent) { /* We found a bad or missing expression in md_operand(). */ *str = input_line_pointer; input_line_pointer = save_in; if (inst.error == NULL) inst.error = (ep->X_op == O_absent ? _("missing expression") :_("bad expression")); return 1; } /* Get rid of any bignums now, so that we don't generate an error for which we can't establish a line number later on. Big numbers are never valid in instructions, which is where this routine is always called. */ if (prefix_mode != GE_OPT_PREFIX_BIG && (ep->X_op == O_big || (ep->X_add_symbol && (walk_no_bignums (ep->X_add_symbol) || (ep->X_op_symbol && walk_no_bignums (ep->X_op_symbol)))))) { inst.error = _("invalid constant"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } *str = input_line_pointer; input_line_pointer = save_in; return SUCCESS; } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. Note that fp constants aren't represent in the normal way on the ARM. In big endian mode, things are as expected. However, in little endian mode fp constants are big-endian word-wise, and little-endian byte-wise within the words. For example, (double) 1.1 in big endian mode is the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is the byte sequence 99 99 f1 3f 9a 99 99 99. ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */ const char * md_atof (int type, char * litP, int * sizeP) { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; int i; switch (type) { case 'H': case 'h': /* bfloat16, despite not being part of the IEEE specification, can also be handled by atof_ieee(). */ case 'b': prec = 1; break; case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 5; break; case 'p': case 'P': prec = 5; break; default: *sizeP = 0; return _("Unrecognized or unsupported floating point constant"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * sizeof (LITTLENUM_TYPE); if (target_big_endian || prec == 1) for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure)) for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += sizeof (LITTLENUM_TYPE); } else /* For a 4 byte float the order of elements in `words' is 1 0. For an 8 byte float the order is 1 0 3 2. */ for (i = 0; i < prec; i += 2) { md_number_to_chars (litP, (valueT) words[i + 1], sizeof (LITTLENUM_TYPE)); md_number_to_chars (litP + sizeof (LITTLENUM_TYPE), (valueT) words[i], sizeof (LITTLENUM_TYPE)); litP += 2 * sizeof (LITTLENUM_TYPE); } return NULL; } /* We handle all bad expressions here, so that we can report the faulty instruction in the error message. */ void md_operand (expressionS * exp) { if (in_my_get_expression) exp->X_op = O_illegal; } /* Immediate values. */ #ifdef OBJ_ELF /* Generic immediate-value read function for use in directives. Accepts anything that 'expression' can fold to a constant. *val receives the number. */ static int immediate_for_directive (int *val) { expressionS exp; exp.X_op = O_illegal; if (is_immediate_prefix (*input_line_pointer)) { input_line_pointer++; expression (&exp); } if (exp.X_op != O_constant) { as_bad (_("expected #constant")); ignore_rest_of_line (); return FAIL; } *val = exp.X_add_number; return SUCCESS; } #endif /* Register parsing. */ /* Generic register parser. CCP points to what should be the beginning of a register name. If it is indeed a valid register name, advance CCP over it and return the reg_entry structure; otherwise return NULL. Does not issue diagnostics. */ static struct reg_entry * arm_reg_parse_multi (char **ccp) { char *start = *ccp; char *p; struct reg_entry *reg; skip_whitespace (start); #ifdef REGISTER_PREFIX if (*start != REGISTER_PREFIX) return NULL; start++; #endif #ifdef OPTIONAL_REGISTER_PREFIX if (*start == OPTIONAL_REGISTER_PREFIX) start++; #endif p = start; if (!ISALPHA (*p) || !is_name_beginner (*p)) return NULL; do p++; while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_'); reg = (struct reg_entry *) str_hash_find_n (arm_reg_hsh, start, p - start); if (!reg) return NULL; *ccp = p; return reg; } static int arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg, enum arm_reg_type type) { /* Alternative syntaxes are accepted for a few register classes. */ switch (type) { case REG_TYPE_MVF: case REG_TYPE_MVD: case REG_TYPE_MVFX: case REG_TYPE_MVDX: /* Generic coprocessor register names are allowed for these. */ if (reg && reg->type == REG_TYPE_CN) return reg->number; break; case REG_TYPE_CP: /* For backward compatibility, a bare number is valid here. */ { unsigned long processor = strtoul (start, ccp, 10); if (*ccp != start && processor <= 15) return processor; } /* Fall through. */ case REG_TYPE_MMXWC: /* WC includes WCG. ??? I'm not sure this is true for all instructions that take WC registers. */ if (reg && reg->type == REG_TYPE_MMXWCG) return reg->number; break; default: break; } return FAIL; } /* As arm_reg_parse_multi, but the register must be of type TYPE, and the return value is the register number or FAIL. */ static int arm_reg_parse (char **ccp, enum arm_reg_type type) { char *start = *ccp; struct reg_entry *reg = arm_reg_parse_multi (ccp); int ret; /* Do not allow a scalar (reg+index) to parse as a register. */ if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX)) return FAIL; if (reg && reg->type == type) return reg->number; if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL) return ret; *ccp = start; return FAIL; } /* Parse a Neon type specifier. *STR should point at the leading '.' character. Does no verification at this stage that the type fits the opcode properly. E.g., .i32.i32.s16 .s32.f32 .u16 Can all be legally parsed by this function. Fills in neon_type struct pointer with parsed information, and updates STR to point after the parsed type specifier. Returns SUCCESS if this was a legal type, FAIL if not. */ static int parse_neon_type (struct neon_type *type, char **str) { char *ptr = *str; if (type) type->elems = 0; while (type->elems < NEON_MAX_TYPE_ELS) { enum neon_el_type thistype = NT_untyped; unsigned thissize = -1u; if (*ptr != '.') break; ptr++; /* Just a size without an explicit type. */ if (ISDIGIT (*ptr)) goto parsesize; switch (TOLOWER (*ptr)) { case 'i': thistype = NT_integer; break; case 'f': thistype = NT_float; break; case 'p': thistype = NT_poly; break; case 's': thistype = NT_signed; break; case 'u': thistype = NT_unsigned; break; case 'd': thistype = NT_float; thissize = 64; ptr++; goto done; case 'b': thistype = NT_bfloat; switch (TOLOWER (*(++ptr))) { case 'f': ptr += 1; thissize = strtoul (ptr, &ptr, 10); if (thissize != 16) { as_bad (_("bad size %d in type specifier"), thissize); return FAIL; } goto done; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case ' ': case '.': as_bad (_("unexpected type character `b' -- did you mean `bf'?")); return FAIL; default: break; } break; default: as_bad (_("unexpected character `%c' in type specifier"), *ptr); return FAIL; } ptr++; /* .f is an abbreviation for .f32. */ if (thistype == NT_float && !ISDIGIT (*ptr)) thissize = 32; else { parsesize: thissize = strtoul (ptr, &ptr, 10); if (thissize != 8 && thissize != 16 && thissize != 32 && thissize != 64) { as_bad (_("bad size %d in type specifier"), thissize); return FAIL; } } done: if (type) { type->el[type->elems].type = thistype; type->el[type->elems].size = thissize; type->elems++; } } /* Empty/missing type is not a successful parse. */ if (type->elems == 0) return FAIL; *str = ptr; return SUCCESS; } /* Errors may be set multiple times during parsing or bit encoding (particularly in the Neon bits), but usually the earliest error which is set will be the most meaningful. Avoid overwriting it with later (cascading) errors by calling this function. */ static void first_error (const char *err) { if (!inst.error) inst.error = err; } /* Parse a single type, e.g. ".s32", leading period included. */ static int parse_neon_operand_type (struct neon_type_el *vectype, char **ccp) { char *str = *ccp; struct neon_type optype; if (*str == '.') { if (parse_neon_type (&optype, &str) == SUCCESS) { if (optype.elems == 1) *vectype = optype.el[0]; else { first_error (_("only one type should be specified for operand")); return FAIL; } } else { first_error (_("vector type expected")); return FAIL; } } else return FAIL; *ccp = str; return SUCCESS; } /* Special meanings for indices (which have a range of 0-7), which will fit into a 4-bit integer. */ #define NEON_ALL_LANES 15 #define NEON_INTERLEAVE_LANES 14 /* Record a use of the given feature. */ static void record_feature_use (const arm_feature_set *feature) { if (thumb_mode) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature); } /* If the given feature available in the selected CPU, mark it as used. Returns TRUE iff feature is available. */ static bool mark_feature_used (const arm_feature_set *feature) { /* Do not support the use of MVE only instructions when in auto-detection or -march=all. */ if (((feature == &mve_ext) || (feature == &mve_fp_ext)) && ARM_CPU_IS_ANY (cpu_variant)) { first_error (BAD_MVE_AUTO); return false; } /* Ensure the option is valid on the current architecture. */ if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature)) return false; /* Add the appropriate architecture feature for the barrier option used. */ record_feature_use (feature); return true; } /* Parse either a register or a scalar, with an optional type. Return the register number, and optionally fill in the actual type of the register when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and type/index information in *TYPEINFO. */ static int parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type, enum arm_reg_type *rtype, struct neon_typed_alias *typeinfo) { char *str = *ccp; struct reg_entry *reg = arm_reg_parse_multi (&str); struct neon_typed_alias atype; struct neon_type_el parsetype; atype.defined = 0; atype.index = -1; atype.eltype.type = NT_invtype; atype.eltype.size = -1; /* Try alternate syntax for some types of register. Note these are mutually exclusive with the Neon syntax extensions. */ if (reg == NULL) { int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type); if (altreg != FAIL) *ccp = str; if (typeinfo) *typeinfo = atype; return altreg; } /* Undo polymorphism when a set of register types may be accepted. */ if ((type == REG_TYPE_NDQ && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD)) || (type == REG_TYPE_VFSD && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD)) || (type == REG_TYPE_NSDQ && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD || reg->type == REG_TYPE_NQ)) || (type == REG_TYPE_NSD && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD)) || (type == REG_TYPE_MMXWC && (reg->type == REG_TYPE_MMXWCG))) type = (enum arm_reg_type) reg->type; if (type == REG_TYPE_MQ) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return FAIL; if (!reg || reg->type != REG_TYPE_NQ) return FAIL; if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32)) { first_error (_("expected MVE register [q0..q7]")); return FAIL; } type = REG_TYPE_NQ; } else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && (type == REG_TYPE_NQ)) return FAIL; if (type != reg->type) return FAIL; if (reg->neon) atype = *reg->neon; if (parse_neon_operand_type (&parsetype, &str) == SUCCESS) { if ((atype.defined & NTA_HASTYPE) != 0) { first_error (_("can't redefine type for operand")); return FAIL; } atype.defined |= NTA_HASTYPE; atype.eltype = parsetype; } if (skip_past_char (&str, '[') == SUCCESS) { if (type != REG_TYPE_VFD && !(type == REG_TYPE_VFS && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)) && !(type == REG_TYPE_NQ && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))) { if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) first_error (_("only D and Q registers may be indexed")); else first_error (_("only D registers may be indexed")); return FAIL; } if ((atype.defined & NTA_HASINDEX) != 0) { first_error (_("can't change index for operand")); return FAIL; } atype.defined |= NTA_HASINDEX; if (skip_past_char (&str, ']') == SUCCESS) atype.index = NEON_ALL_LANES; else { expressionS exp; my_get_expression (&exp, &str, GE_NO_PREFIX); if (exp.X_op != O_constant) { first_error (_("constant expression required")); return FAIL; } if (skip_past_char (&str, ']') == FAIL) return FAIL; atype.index = exp.X_add_number; } } if (typeinfo) *typeinfo = atype; if (rtype) *rtype = type; *ccp = str; return reg->number; } /* Like arm_reg_parse, but also allow the following extra features: - If RTYPE is non-zero, return the (possibly restricted) type of the register (e.g. Neon double or quad reg when either has been requested). - If this is a Neon vector type with additional type information, fill in the struct pointed to by VECTYPE (if non-NULL). This function will fault on encountering a scalar. */ static int arm_typed_reg_parse (char **ccp, enum arm_reg_type type, enum arm_reg_type *rtype, struct neon_type_el *vectype) { struct neon_typed_alias atype; char *str = *ccp; int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype); if (reg == FAIL) return FAIL; /* Do not allow regname(... to parse as a register. */ if (*str == '(') return FAIL; /* Do not allow a scalar (reg+index) to parse as a register. */ if ((atype.defined & NTA_HASINDEX) != 0) { first_error (_("register operand expected, but got scalar")); return FAIL; } if (vectype) *vectype = atype.eltype; *ccp = str; return reg; } #define NEON_SCALAR_REG(X) ((X) >> 4) #define NEON_SCALAR_INDEX(X) ((X) & 15) /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't have enough information to be able to do a good job bounds-checking. So, we just do easy checks here, and do further checks later. */ static int parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum arm_reg_type reg_type) { int reg; char *str = *ccp; struct neon_typed_alias atype; unsigned reg_size; reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype); switch (reg_type) { case REG_TYPE_VFS: reg_size = 32; break; case REG_TYPE_VFD: reg_size = 64; break; case REG_TYPE_MQ: reg_size = 128; break; default: gas_assert (0); return FAIL; } if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0) return FAIL; if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES) { first_error (_("scalar must have an index")); return FAIL; } else if (atype.index >= reg_size / elsize) { first_error (_("scalar index out of range")); return FAIL; } if (type) *type = atype.eltype; *ccp = str; return reg * 16 + atype.index; } /* Types of registers in a list. */ enum reg_list_els { REGLIST_RN, REGLIST_PSEUDO, REGLIST_CLRM, REGLIST_VFP_S, REGLIST_VFP_S_VPR, REGLIST_VFP_D, REGLIST_VFP_D_VPR, REGLIST_NEON_D }; /* Parse an ARM register list. Returns the bitmask, or FAIL. */ static long parse_reg_list (char ** strp, enum reg_list_els etype) { char *str = *strp; long range = 0; int another_range; gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM || etype == REGLIST_PSEUDO); /* We come back here if we get ranges concatenated by '+' or '|'. */ do { skip_whitespace (str); another_range = 0; if (*str == '{') { int in_range = 0; int cur_reg = -1; str++; do { int reg; const char apsr_str[] = "apsr"; int apsr_str_len = strlen (apsr_str); enum arm_reg_type rt; if (etype == REGLIST_RN || etype == REGLIST_CLRM) rt = REG_TYPE_RN; else rt = REG_TYPE_PSEUDO; reg = arm_reg_parse (&str, rt); if (etype == REGLIST_CLRM) { if (reg == REG_SP || reg == REG_PC) reg = FAIL; else if (reg == FAIL && !strncasecmp (str, apsr_str, apsr_str_len) && !ISALPHA (*(str + apsr_str_len))) { reg = 15; str += apsr_str_len; } if (reg == FAIL) { first_error (_("r0-r12, lr or APSR expected")); return FAIL; } } else if (etype == REGLIST_PSEUDO) { if (reg == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_PSEUDO])); return FAIL; } } else /* etype == REGLIST_RN. */ { if (reg == FAIL) { first_error (_(reg_expected_msgs[REGLIST_RN])); return FAIL; } } if (in_range) { int i; if (reg <= cur_reg) { first_error (_("bad range in register list")); return FAIL; } for (i = cur_reg + 1; i < reg; i++) { if (range & (1 << i)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), i); else range |= 1 << i; } in_range = 0; } if (range & (1 << reg)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), reg); else if (reg <= cur_reg) as_tsktsk (_("Warning: register range not in ascending order")); range |= 1 << reg; cur_reg = reg; } while (skip_past_comma (&str) != FAIL || (in_range = 1, *str++ == '-')); str--; if (skip_past_char (&str, '}') == FAIL) { first_error (_("missing `}'")); return FAIL; } } else if (etype == REGLIST_RN) { expressionS exp; if (my_get_expression (&exp, &str, GE_NO_PREFIX)) return FAIL; if (exp.X_op == O_constant) { if (exp.X_add_number != (exp.X_add_number & 0x0000ffff)) { inst.error = _("invalid register mask"); return FAIL; } if ((range & exp.X_add_number) != 0) { int regno = range & exp.X_add_number; regno &= -regno; regno = (1 << regno) - 1; as_tsktsk (_("Warning: duplicated register (r%d) in register list"), regno); } range |= exp.X_add_number; } else { if (inst.relocs[0].type != 0) { inst.error = _("expression too complex"); return FAIL; } memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS)); inst.relocs[0].type = BFD_RELOC_ARM_MULTI; inst.relocs[0].pc_rel = 0; } } if (*str == '|' || *str == '+') { str++; another_range = 1; } } while (another_range); *strp = str; return range; } /* Parse a VFP register list. If the string is invalid return FAIL. Otherwise return the number of registers, and set PBASE to the first register. Parses registers of type ETYPE. If REGLIST_NEON_D is used, several syntax enhancements are enabled: - Q registers can be used to specify pairs of D registers - { } can be omitted from around a singleton register list FIXME: This is not implemented, as it would require backtracking in some cases, e.g.: vtbl.8 d3,d4,d5 This could be done (the meaning isn't really ambiguous), but doesn't fit in well with the current parsing framework. - 32 D registers may be used (also true for VFPv3). FIXME: Types are ignored in these register lists, which is probably a bug. */ static int parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype, bool *partial_match) { char *str = *ccp; int base_reg; int new_base; enum arm_reg_type regtype = (enum arm_reg_type) 0; int max_regs = 0; int count = 0; int warned = 0; unsigned long mask = 0; int i; bool vpr_seen = false; bool expect_vpr = (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR); if (skip_past_char (&str, '{') == FAIL) { inst.error = _("expecting {"); return FAIL; } switch (etype) { case REGLIST_VFP_S: case REGLIST_VFP_S_VPR: regtype = REG_TYPE_VFS; max_regs = 32; break; case REGLIST_VFP_D: case REGLIST_VFP_D_VPR: regtype = REG_TYPE_VFD; break; case REGLIST_NEON_D: regtype = REG_TYPE_NDQ; break; default: gas_assert (0); } if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR) { /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */ if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32)) { max_regs = 32; if (thumb_mode) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, fpu_vfp_ext_d32); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, fpu_vfp_ext_d32); } else max_regs = 16; } base_reg = max_regs; *partial_match = false; do { unsigned int setmask = 1, addregs = 1; const char vpr_str[] = "vpr"; size_t vpr_str_len = strlen (vpr_str); new_base = arm_typed_reg_parse (&str, regtype, ®type, NULL); if (expect_vpr) { if (new_base == FAIL && !strncasecmp (str, vpr_str, vpr_str_len) && !ISALPHA (*(str + vpr_str_len)) && !vpr_seen) { vpr_seen = true; str += vpr_str_len; if (count == 0) base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */ } else if (vpr_seen) { first_error (_("VPR expected last")); return FAIL; } else if (new_base == FAIL) { if (regtype == REG_TYPE_VFS) first_error (_("VFP single precision register or VPR " "expected")); else /* regtype == REG_TYPE_VFD. */ first_error (_("VFP/Neon double precision register or VPR " "expected")); return FAIL; } } else if (new_base == FAIL) { first_error (_(reg_expected_msgs[regtype])); return FAIL; } *partial_match = true; if (vpr_seen) continue; if (new_base >= max_regs) { first_error (_("register out of range in list")); return FAIL; } /* Note: a value of 2 * n is returned for the register Q. */ if (regtype == REG_TYPE_NQ) { setmask = 3; addregs = 2; } if (new_base < base_reg) base_reg = new_base; if (mask & (setmask << new_base)) { first_error (_("invalid register list")); return FAIL; } if ((mask >> new_base) != 0 && ! warned && !vpr_seen) { as_tsktsk (_("register list not in ascending order")); warned = 1; } mask |= setmask << new_base; count += addregs; if (*str == '-') /* We have the start of a range expression */ { int high_range; str++; if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL)) == FAIL) { inst.error = gettext (reg_expected_msgs[regtype]); return FAIL; } if (high_range >= max_regs) { first_error (_("register out of range in list")); return FAIL; } if (regtype == REG_TYPE_NQ) high_range = high_range + 1; if (high_range <= new_base) { inst.error = _("register range not in ascending order"); return FAIL; } for (new_base += addregs; new_base <= high_range; new_base += addregs) { if (mask & (setmask << new_base)) { inst.error = _("invalid register list"); return FAIL; } mask |= setmask << new_base; count += addregs; } } } while (skip_past_comma (&str) != FAIL); str++; /* Sanity check -- should have raised a parse error above. */ if ((!vpr_seen && count == 0) || count > max_regs) abort (); *pbase = base_reg; if (expect_vpr && !vpr_seen) { first_error (_("VPR expected last")); return FAIL; } /* Final test -- the registers must be consecutive. */ mask >>= base_reg; for (i = 0; i < count; i++) { if ((mask & (1u << i)) == 0) { inst.error = _("non-contiguous register range"); return FAIL; } } *ccp = str; return count; } /* True if two alias types are the same. */ static bool neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b) { if (!a && !b) return true; if (!a || !b) return false; if (a->defined != b->defined) return false; if ((a->defined & NTA_HASTYPE) != 0 && (a->eltype.type != b->eltype.type || a->eltype.size != b->eltype.size)) return false; if ((a->defined & NTA_HASINDEX) != 0 && (a->index != b->index)) return false; return true; } /* Parse element/structure lists for Neon VLD and VST instructions. The base register is put in *PBASE. The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of the return value. The register stride (minus one) is put in bit 4 of the return value. Bits [6:5] encode the list length (minus one). The type of the list elements is put in *ELTYPE, if non-NULL. */ #define NEON_LANE(X) ((X) & 0xf) #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1) #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1) static int parse_neon_el_struct_list (char **str, unsigned *pbase, int mve, struct neon_type_el *eltype) { char *ptr = *str; int base_reg = -1; int reg_incr = -1; int count = 0; int lane = -1; int leading_brace = 0; enum arm_reg_type rtype = REG_TYPE_NDQ; const char *const incr_error = mve ? _("register stride must be 1") : _("register stride must be 1 or 2"); const char *const type_error = _("mismatched element/structure types in list"); struct neon_typed_alias firsttype; firsttype.defined = 0; firsttype.eltype.type = NT_invtype; firsttype.eltype.size = -1; firsttype.index = -1; if (skip_past_char (&ptr, '{') == SUCCESS) leading_brace = 1; do { struct neon_typed_alias atype; if (mve) rtype = REG_TYPE_MQ; int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype); if (getreg == FAIL) { first_error (_(reg_expected_msgs[rtype])); return FAIL; } if (base_reg == -1) { base_reg = getreg; if (rtype == REG_TYPE_NQ) { reg_incr = 1; } firsttype = atype; } else if (reg_incr == -1) { reg_incr = getreg - base_reg; if (reg_incr < 1 || reg_incr > 2) { first_error (_(incr_error)); return FAIL; } } else if (getreg != base_reg + reg_incr * count) { first_error (_(incr_error)); return FAIL; } if (! neon_alias_types_same (&atype, &firsttype)) { first_error (_(type_error)); return FAIL; } /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list modes. */ if (ptr[0] == '-') { struct neon_typed_alias htype; int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1; if (lane == -1) lane = NEON_INTERLEAVE_LANES; else if (lane != NEON_INTERLEAVE_LANES) { first_error (_(type_error)); return FAIL; } if (reg_incr == -1) reg_incr = 1; else if (reg_incr != 1) { first_error (_("don't use Rn-Rm syntax with non-unit stride")); return FAIL; } ptr++; hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype); if (hireg == FAIL) { first_error (_(reg_expected_msgs[rtype])); return FAIL; } if (! neon_alias_types_same (&htype, &firsttype)) { first_error (_(type_error)); return FAIL; } count += hireg + dregs - getreg; continue; } /* If we're using Q registers, we can't use [] or [n] syntax. */ if (rtype == REG_TYPE_NQ) { count += 2; continue; } if ((atype.defined & NTA_HASINDEX) != 0) { if (lane == -1) lane = atype.index; else if (lane != atype.index) { first_error (_(type_error)); return FAIL; } } else if (lane == -1) lane = NEON_INTERLEAVE_LANES; else if (lane != NEON_INTERLEAVE_LANES) { first_error (_(type_error)); return FAIL; } count++; } while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL); /* No lane set by [x]. We must be interleaving structures. */ if (lane == -1) lane = NEON_INTERLEAVE_LANES; /* Sanity check. */ if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4) || (count > 1 && reg_incr == -1)) { first_error (_("error parsing element/structure list")); return FAIL; } if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL) { first_error (_("expected }")); return FAIL; } if (reg_incr == -1) reg_incr = 1; if (eltype) *eltype = firsttype.eltype; *pbase = base_reg; *str = ptr; return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5); } /* Parse an explicit relocation suffix on an expression. This is either nothing, or a word in parentheses. Note that if !OBJ_ELF, arm_reloc_hsh contains no entries, so this function can only succeed if there is no () after the word. Returns -1 on error, BFD_RELOC_UNUSED if there wasn't any suffix. */ static int parse_reloc (char **str) { struct reloc_entry *r; char *p, *q; if (**str != '(') return BFD_RELOC_UNUSED; p = *str + 1; q = p; while (*q && *q != ')' && *q != ',') q++; if (*q != ')') return -1; if ((r = (struct reloc_entry *) str_hash_find_n (arm_reloc_hsh, p, q - p)) == NULL) return -1; *str = q + 1; return r->reloc; } /* Directives: register aliases. */ static struct reg_entry * insert_reg_alias (char *str, unsigned number, int type) { struct reg_entry *new_reg; const char *name; if ((new_reg = (struct reg_entry *) str_hash_find (arm_reg_hsh, str)) != 0) { if (new_reg->builtin) as_warn (_("ignoring attempt to redefine built-in register '%s'"), str); /* Only warn about a redefinition if it's not defined as the same register. */ else if (new_reg->number != number || new_reg->type != type) as_warn (_("ignoring redefinition of register alias '%s'"), str); return NULL; } name = xstrdup (str); new_reg = XNEW (struct reg_entry); new_reg->name = name; new_reg->number = number; new_reg->type = type; new_reg->builtin = false; new_reg->neon = NULL; str_hash_insert (arm_reg_hsh, name, new_reg, 0); return new_reg; } static void insert_neon_reg_alias (char *str, int number, int type, struct neon_typed_alias *atype) { struct reg_entry *reg = insert_reg_alias (str, number, type); if (!reg) { first_error (_("attempt to redefine typed alias")); return; } if (atype) { reg->neon = XNEW (struct neon_typed_alias); *reg->neon = *atype; } } /* Look for the .req directive. This is of the form: new_register_name .req existing_register_name If we find one, or if it looks sufficiently like one that we want to handle any error here, return TRUE. Otherwise return FALSE. */ static bool create_register_alias (char * newname, char *p) { struct reg_entry *old; char *oldname, *nbuf; size_t nlen; /* The input scrubber ensures that whitespace after the mnemonic is collapsed to single spaces. */ oldname = p; if (!startswith (oldname, " .req ")) return false; oldname += 6; if (*oldname == '\0') return false; old = (struct reg_entry *) str_hash_find (arm_reg_hsh, oldname); if (!old) { as_warn (_("unknown register '%s' -- .req ignored"), oldname); return true; } /* If TC_CASE_SENSITIVE is defined, then newname already points to the desired alias name, and p points to its end. If not, then the desired alias name is in the global original_case_string. */ #ifdef TC_CASE_SENSITIVE nlen = p - newname; #else newname = original_case_string; nlen = strlen (newname); #endif nbuf = xmemdup0 (newname, nlen); /* Create aliases under the new name as stated; an all-lowercase version of the new name; and an all-uppercase version of the new name. */ if (insert_reg_alias (nbuf, old->number, old->type) != NULL) { for (p = nbuf; *p; p++) *p = TOUPPER (*p); if (strncmp (nbuf, newname, nlen)) { /* If this attempt to create an additional alias fails, do not bother trying to create the all-lower case alias. We will fail and issue a second, duplicate error message. This situation arises when the programmer does something like: foo .req r0 Foo .req r1 The second .req creates the "Foo" alias but then fails to create the artificial FOO alias because it has already been created by the first .req. */ if (insert_reg_alias (nbuf, old->number, old->type) == NULL) { free (nbuf); return true; } } for (p = nbuf; *p; p++) *p = TOLOWER (*p); if (strncmp (nbuf, newname, nlen)) insert_reg_alias (nbuf, old->number, old->type); } free (nbuf); return true; } /* Create a Neon typed/indexed register alias using directives, e.g.: X .dn d5.s32[1] Y .qn 6.s16 Z .dn d7 T .dn Z[0] These typed registers can be used instead of the types specified after the Neon mnemonic, so long as all operands given have types. Types can also be specified directly, e.g.: vadd d0.s32, d1.s32, d2.s32 */ static bool create_neon_reg_alias (char *newname, char *p) { enum arm_reg_type basetype; struct reg_entry *basereg; struct reg_entry mybasereg; struct neon_type ntype; struct neon_typed_alias typeinfo; char *namebuf, *nameend ATTRIBUTE_UNUSED; int namelen; typeinfo.defined = 0; typeinfo.eltype.type = NT_invtype; typeinfo.eltype.size = -1; typeinfo.index = -1; nameend = p; if (startswith (p, " .dn ")) basetype = REG_TYPE_VFD; else if (startswith (p, " .qn ")) basetype = REG_TYPE_NQ; else return false; p += 5; if (*p == '\0') return false; basereg = arm_reg_parse_multi (&p); if (basereg && basereg->type != basetype) { as_bad (_("bad type for register")); return false; } if (basereg == NULL) { expressionS exp; /* Try parsing as an integer. */ my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { as_bad (_("expression must be constant")); return false; } basereg = &mybasereg; basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2 : exp.X_add_number; basereg->neon = 0; } if (basereg->neon) typeinfo = *basereg->neon; if (parse_neon_type (&ntype, &p) == SUCCESS) { /* We got a type. */ if (typeinfo.defined & NTA_HASTYPE) { as_bad (_("can't redefine the type of a register alias")); return false; } typeinfo.defined |= NTA_HASTYPE; if (ntype.elems != 1) { as_bad (_("you must specify a single type only")); return false; } typeinfo.eltype = ntype.el[0]; } if (skip_past_char (&p, '[') == SUCCESS) { expressionS exp; /* We got a scalar index. */ if (typeinfo.defined & NTA_HASINDEX) { as_bad (_("can't redefine the index of a scalar alias")); return false; } my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { as_bad (_("scalar index must be constant")); return false; } typeinfo.defined |= NTA_HASINDEX; typeinfo.index = exp.X_add_number; if (skip_past_char (&p, ']') == FAIL) { as_bad (_("expecting ]")); return false; } } /* If TC_CASE_SENSITIVE is defined, then newname already points to the desired alias name, and p points to its end. If not, then the desired alias name is in the global original_case_string. */ #ifdef TC_CASE_SENSITIVE namelen = nameend - newname; #else newname = original_case_string; namelen = strlen (newname); #endif namebuf = xmemdup0 (newname, namelen); insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); /* Insert name in all uppercase. */ for (p = namebuf; *p; p++) *p = TOUPPER (*p); if (strncmp (namebuf, newname, namelen)) insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); /* Insert name in all lowercase. */ for (p = namebuf; *p; p++) *p = TOLOWER (*p); if (strncmp (namebuf, newname, namelen)) insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); free (namebuf); return true; } /* Should never be called, as .req goes between the alias and the register name, not at the beginning of the line. */ static void s_req (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .req directive")); } static void s_dn (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .dn directive")); } static void s_qn (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .qn directive")); } /* The .unreq directive deletes an alias which was previously defined by .req. For example: my_alias .req r11 .unreq my_alias */ static void s_unreq (int a ATTRIBUTE_UNUSED) { char * name; char saved_char; name = input_line_pointer; input_line_pointer = find_end_of_line (input_line_pointer, flag_m68k_mri); saved_char = *input_line_pointer; *input_line_pointer = 0; if (!*name) as_bad (_("invalid syntax for .unreq directive")); else { struct reg_entry *reg = (struct reg_entry *) str_hash_find (arm_reg_hsh, name); if (!reg) as_bad (_("unknown register alias '%s'"), name); else if (reg->builtin) as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"), name); else { char * p; char * nbuf; str_hash_delete (arm_reg_hsh, name); free ((char *) reg->name); free (reg->neon); free (reg); /* Also locate the all upper case and all lower case versions. Do not complain if we cannot find one or the other as it was probably deleted above. */ nbuf = strdup (name); for (p = nbuf; *p; p++) *p = TOUPPER (*p); reg = (struct reg_entry *) str_hash_find (arm_reg_hsh, nbuf); if (reg) { str_hash_delete (arm_reg_hsh, nbuf); free ((char *) reg->name); free (reg->neon); free (reg); } for (p = nbuf; *p; p++) *p = TOLOWER (*p); reg = (struct reg_entry *) str_hash_find (arm_reg_hsh, nbuf); if (reg) { str_hash_delete (arm_reg_hsh, nbuf); free ((char *) reg->name); free (reg->neon); free (reg); } free (nbuf); } } *input_line_pointer = saved_char; demand_empty_rest_of_line (); } /* Directives: Instruction set selection. */ #ifdef OBJ_ELF /* This code is to handle mapping symbols as defined in the ARM ELF spec. (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0). Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag), and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */ /* Create a new mapping symbol for the transition to STATE. */ static void make_mapping_symbol (enum mstate state, valueT value, fragS *frag) { symbolS * symbolP; const char * symname; int type; switch (state) { case MAP_DATA: symname = "$d"; type = BSF_NO_FLAGS; break; case MAP_ARM: symname = "$a"; type = BSF_NO_FLAGS; break; case MAP_THUMB: symname = "$t"; type = BSF_NO_FLAGS; break; default: abort (); } symbolP = symbol_new (symname, now_seg, frag, value); symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL; switch (state) { case MAP_ARM: THUMB_SET_FUNC (symbolP, 0); ARM_SET_THUMB (symbolP, 0); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_THUMB: THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_DATA: default: break; } /* Save the mapping symbols for future reference. Also check that we do not place two mapping symbols at the same offset within a frag. We'll handle overlap between frags in check_mapping_symbols. If .fill or other data filling directive generates zero sized data, the mapping symbol for the following code will have the same value as the one generated for the data filling directive. In this case, we replace the old symbol with the new one at the same address. */ if (value == 0) { if (frag->tc_frag_data.first_map != NULL) { know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0); symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP); } frag->tc_frag_data.first_map = symbolP; } if (frag->tc_frag_data.last_map != NULL) { know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP)); if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP)) symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP); } frag->tc_frag_data.last_map = symbolP; } /* We must sometimes convert a region marked as code to data during code alignment, if an odd number of bytes have to be padded. The code mapping symbol is pushed to an aligned address. */ static void insert_data_mapping_symbol (enum mstate state, valueT value, fragS *frag, offsetT bytes) { /* If there was already a mapping symbol, remove it. */ if (frag->tc_frag_data.last_map != NULL && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value) { symbolS *symp = frag->tc_frag_data.last_map; if (value == 0) { know (frag->tc_frag_data.first_map == symp); frag->tc_frag_data.first_map = NULL; } frag->tc_frag_data.last_map = NULL; symbol_remove (symp, &symbol_rootP, &symbol_lastP); } make_mapping_symbol (MAP_DATA, value, frag); make_mapping_symbol (state, value + bytes, frag); } static void mapping_state_2 (enum mstate state, int max_chars); /* Set the mapping state to STATE. Only call this when about to emit some STATE bytes to the file. */ #define TRANSITION(from, to) (mapstate == (from) && state == (to)) void mapping_state (enum mstate state) { enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate; if (mapstate == state) /* The mapping symbol has already been emitted. There is nothing else to do. */ return; if (state == MAP_ARM || state == MAP_THUMB) /* PR gas/12931 All ARM instructions require 4-byte alignment. (Almost) all Thumb instructions require 2-byte alignment. When emitting instructions into any section, mark the section appropriately. Some Thumb instructions are alignment-sensitive modulo 4 bytes, but themselves require 2-byte alignment; this applies to some PC- relative forms. However, these cases will involve implicit literal pool generation or an explicit .align >=2, both of which will cause the section to me marked with sufficient alignment. Thus, we don't handle those cases here. */ record_alignment (now_seg, state == MAP_ARM ? 2 : 1); if (TRANSITION (MAP_UNDEFINED, MAP_DATA)) /* This case will be evaluated later. */ return; mapping_state_2 (state, 0); } /* Same as mapping_state, but MAX_CHARS bytes have already been allocated. Put the mapping symbol that far back. */ static void mapping_state_2 (enum mstate state, int max_chars) { enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate; if (!SEG_NORMAL (now_seg)) return; if (mapstate == state) /* The mapping symbol has already been emitted. There is nothing else to do. */ return; if (TRANSITION (MAP_UNDEFINED, MAP_ARM) || TRANSITION (MAP_UNDEFINED, MAP_THUMB)) { struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root; const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0); if (add_symbol) make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first); } seg_info (now_seg)->tc_segment_info_data.mapstate = state; make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now); } #undef TRANSITION #else #define mapping_state(x) ((void)0) #define mapping_state_2(x, y) ((void)0) #endif /* Find the real, Thumb encoded start of a Thumb function. */ #ifdef OBJ_COFF static symbolS * find_real_start (symbolS * symbolP) { char * real_start; const char * name = S_GET_NAME (symbolP); symbolS * new_target; /* This definition must agree with the one in gcc/config/arm/thumb.c. */ #define STUB_NAME ".real_start_of" if (name == NULL) abort (); /* The compiler may generate BL instructions to local labels because it needs to perform a branch to a far away location. These labels do not have a corresponding ".real_start_of" label. We check both for S_IS_LOCAL and for a leading dot, to give a way to bypass the ".real_start_of" convention for nonlocal branches. */ if (S_IS_LOCAL (symbolP) || name[0] == '.') return symbolP; real_start = concat (STUB_NAME, name, NULL); new_target = symbol_find (real_start); free (real_start); if (new_target == NULL) { as_warn (_("Failed to find real start of function: %s\n"), name); new_target = symbolP; } return new_target; } #endif static void opcode_select (int width) { switch (width) { case 16: if (! thumb_mode) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t)) as_bad (_("selected processor does not support THUMB opcodes")); thumb_mode = 1; /* No need to force the alignment, since we will have been coming from ARM mode, which is word-aligned. */ record_alignment (now_seg, 1); } break; case 32: if (thumb_mode) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)) as_bad (_("selected processor does not support ARM opcodes")); thumb_mode = 0; if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 1); } break; default: as_bad (_("invalid instruction size selected (%d)"), width); } } static void s_arm (int ignore ATTRIBUTE_UNUSED) { opcode_select (32); demand_empty_rest_of_line (); } static void s_thumb (int ignore ATTRIBUTE_UNUSED) { opcode_select (16); demand_empty_rest_of_line (); } static void s_code (int unused ATTRIBUTE_UNUSED) { int temp; temp = get_absolute_expression (); switch (temp) { case 16: case 32: opcode_select (temp); break; default: as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp); } demand_empty_rest_of_line (); } static void s_force_thumb (int ignore ATTRIBUTE_UNUSED) { /* If we are not already in thumb mode go into it, EVEN if the target processor does not support thumb instructions. This is used by gcc/config/arm/lib1funcs.asm for example to compile interworking support functions even if the target processor should not support interworking. */ if (! thumb_mode) { thumb_mode = 2; record_alignment (now_seg, 1); } demand_empty_rest_of_line (); } static void s_thumb_func (int ignore ATTRIBUTE_UNUSED) { s_thumb (0); /* Will check for end-of-line. */ /* The following label is the name/address of the start of a Thumb function. We need to know this for the interworking support. */ label_is_thumb_function_name = true; } /* Perform a .set directive, but also mark the alias as being a thumb function. */ static void s_thumb_set (int equiv) { /* XXX the following is a duplicate of the code for s_set() in read.c We cannot just call that code as we need to get at the symbol that is created. */ char * name; char delim; char * end_name; symbolS * symbolP; /* Especial apologies for the random logic: This just grew, and could be parsed much more simply! Dean - in haste. */ delim = get_symbol_name (& name); end_name = input_line_pointer; (void) restore_line_pointer (delim); if (*input_line_pointer != ',') { *end_name = 0; as_bad (_("expected comma after name \"%s\""), name); *end_name = delim; ignore_rest_of_line (); return; } input_line_pointer++; *end_name = 0; if (name[0] == '.' && name[1] == '\0') { /* XXX - this should not happen to .thumb_set. */ abort (); } if ((symbolP = symbol_find (name)) == NULL && (symbolP = md_undefined_symbol (name)) == NULL) { #ifndef NO_LISTING /* When doing symbol listings, play games with dummy fragments living outside the normal fragment chain to record the file and line info for this symbol. */ if (listing & LISTING_SYMBOLS) { extern struct list_info_struct * listing_tail; fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS)); memset (dummy_frag, 0, sizeof (fragS)); dummy_frag->fr_type = rs_fill; dummy_frag->line = listing_tail; symbolP = symbol_new (name, undefined_section, dummy_frag, 0); dummy_frag->fr_symbol = symbolP; } else #endif symbolP = symbol_new (name, undefined_section, &zero_address_frag, 0); #ifdef OBJ_COFF /* "set" symbols are local unless otherwise specified. */ SF_SET_LOCAL (symbolP); #endif /* OBJ_COFF */ } /* Make a new symbol. */ symbol_table_insert (symbolP); * end_name = delim; if (equiv && S_IS_DEFINED (symbolP) && S_GET_SEGMENT (symbolP) != reg_section) as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP)); pseudo_set (symbolP); demand_empty_rest_of_line (); /* XXX Now we come to the Thumb specific bit of code. */ THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); #if defined OBJ_ELF || defined OBJ_COFF ARM_SET_INTERWORK (symbolP, support_interwork); #endif } /* Directives: Mode selection. */ /* .syntax [unified|divided] - choose the new unified syntax (same for Arm and Thumb encoding, modulo slight differences in what can be represented) or the old divergent syntax for each mode. */ static void s_syntax (int unused ATTRIBUTE_UNUSED) { char *name, delim; delim = get_symbol_name (& name); if (!strcasecmp (name, "unified")) unified_syntax = true; else if (!strcasecmp (name, "divided")) unified_syntax = false; else { as_bad (_("unrecognized syntax mode \"%s\""), name); return; } (void) restore_line_pointer (delim); demand_empty_rest_of_line (); } /* Directives: alignment. */ static void s_even (int ignore ATTRIBUTE_UNUSED) { /* Never make frag if expect extra pass. */ if (!need_pass_2) frag_align (1, 0, 0); record_alignment (now_seg, 1); demand_empty_rest_of_line (); } /* Directives: CodeComposer Studio. */ /* .ref (for CodeComposer Studio syntax only). */ static void s_ccs_ref (int unused ATTRIBUTE_UNUSED) { if (codecomposer_syntax) ignore_rest_of_line (); else as_bad (_(".ref pseudo-op only available with -mccs flag.")); } /* If name is not NULL, then it is used for marking the beginning of a function, whereas if it is NULL then it means the function end. */ static void asmfunc_debug (const char * name) { static const char * last_name = NULL; if (name != NULL) { gas_assert (last_name == NULL); last_name = name; if (debug_type == DEBUG_STABS) stabs_generate_asm_func (name, name); } else { gas_assert (last_name != NULL); if (debug_type == DEBUG_STABS) stabs_generate_asm_endfunc (last_name, last_name); last_name = NULL; } } static void s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED) { if (codecomposer_syntax) { switch (asmfunc_state) { case OUTSIDE_ASMFUNC: asmfunc_state = WAITING_ASMFUNC_NAME; break; case WAITING_ASMFUNC_NAME: as_bad (_(".asmfunc repeated.")); break; case WAITING_ENDASMFUNC: as_bad (_(".asmfunc without function.")); break; } demand_empty_rest_of_line (); } else as_bad (_(".asmfunc pseudo-op only available with -mccs flag.")); } static void s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED) { if (codecomposer_syntax) { switch (asmfunc_state) { case OUTSIDE_ASMFUNC: as_bad (_(".endasmfunc without a .asmfunc.")); break; case WAITING_ASMFUNC_NAME: as_bad (_(".endasmfunc without function.")); break; case WAITING_ENDASMFUNC: asmfunc_state = OUTSIDE_ASMFUNC; asmfunc_debug (NULL); break; } demand_empty_rest_of_line (); } else as_bad (_(".endasmfunc pseudo-op only available with -mccs flag.")); } static void s_ccs_def (int name) { if (codecomposer_syntax) s_globl (name); else as_bad (_(".def pseudo-op only available with -mccs flag.")); } /* Directives: Literal pools. */ static literal_pool * find_literal_pool (void) { literal_pool * pool; for (pool = list_of_pools; pool != NULL; pool = pool->next) { if (pool->section == now_seg && pool->sub_section == now_subseg) break; } return pool; } static literal_pool * find_or_make_literal_pool (void) { /* Next literal pool ID number. */ static unsigned int latest_pool_num = 1; literal_pool * pool; pool = find_literal_pool (); if (pool == NULL) { /* Create a new pool. */ pool = XNEW (literal_pool); if (! pool) return NULL; pool->next_free_entry = 0; pool->section = now_seg; pool->sub_section = now_subseg; pool->next = list_of_pools; pool->symbol = NULL; pool->alignment = 2; /* Add it to the list. */ list_of_pools = pool; } /* New pools, and emptied pools, will have a NULL symbol. */ if (pool->symbol == NULL) { pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section, &zero_address_frag, 0); pool->id = latest_pool_num ++; } /* Done. */ return pool; } /* Add the literal in the global 'inst' structure to the relevant literal pool. */ static int add_to_lit_pool (unsigned int nbytes) { #define PADDING_SLOT 0x1 #define LIT_ENTRY_SIZE_MASK 0xFF literal_pool * pool; unsigned int entry, pool_size = 0; bool padding_slot_p = false; unsigned imm1 = 0; unsigned imm2 = 0; if (nbytes == 8) { imm1 = inst.operands[1].imm; imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg : inst.relocs[0].exp.X_unsigned ? 0 : (int64_t) inst.operands[1].imm >> 32); if (target_big_endian) { imm1 = imm2; imm2 = inst.operands[1].imm; } } pool = find_or_make_literal_pool (); /* Check if this literal value is already in the pool. */ for (entry = 0; entry < pool->next_free_entry; entry ++) { if (nbytes == 4) { if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op) && (inst.relocs[0].exp.X_op == O_constant) && (pool->literals[entry].X_add_number == inst.relocs[0].exp.X_add_number) && (pool->literals[entry].X_md == nbytes) && (pool->literals[entry].X_unsigned == inst.relocs[0].exp.X_unsigned)) break; if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op) && (inst.relocs[0].exp.X_op == O_symbol) && (pool->literals[entry].X_add_number == inst.relocs[0].exp.X_add_number) && (pool->literals[entry].X_add_symbol == inst.relocs[0].exp.X_add_symbol) && (pool->literals[entry].X_op_symbol == inst.relocs[0].exp.X_op_symbol) && (pool->literals[entry].X_md == nbytes)) break; } else if ((nbytes == 8) && !(pool_size & 0x7) && ((entry + 1) != pool->next_free_entry) && (pool->literals[entry].X_op == O_constant) && (pool->literals[entry].X_add_number == (offsetT) imm1) && (pool->literals[entry].X_unsigned == inst.relocs[0].exp.X_unsigned) && (pool->literals[entry + 1].X_op == O_constant) && (pool->literals[entry + 1].X_add_number == (offsetT) imm2) && (pool->literals[entry + 1].X_unsigned == inst.relocs[0].exp.X_unsigned)) break; padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT); if (padding_slot_p && (nbytes == 4)) break; pool_size += 4; } /* Do we need to create a new entry? */ if (entry == pool->next_free_entry) { if (entry >= MAX_LITERAL_POOL_SIZE) { inst.error = _("literal pool overflow"); return FAIL; } if (nbytes == 8) { /* For 8-byte entries, we align to an 8-byte boundary, and split it into two 4-byte entries, because on 32-bit host, 8-byte constants are treated as big num, thus saved in "generic_bignum" which will be overwritten by later assignments. We also need to make sure there is enough space for the split. We also check to make sure the literal operand is a constant number. */ if (!(inst.relocs[0].exp.X_op == O_constant || inst.relocs[0].exp.X_op == O_big)) { inst.error = _("invalid type for literal pool"); return FAIL; } else if (pool_size & 0x7) { if ((entry + 2) >= MAX_LITERAL_POOL_SIZE) { inst.error = _("literal pool overflow"); return FAIL; } pool->literals[entry] = inst.relocs[0].exp; pool->literals[entry].X_op = O_constant; pool->literals[entry].X_add_number = 0; pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4; pool->next_free_entry += 1; pool_size += 4; } else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE) { inst.error = _("literal pool overflow"); return FAIL; } pool->literals[entry] = inst.relocs[0].exp; pool->literals[entry].X_op = O_constant; pool->literals[entry].X_add_number = imm1; pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned; pool->literals[entry++].X_md = 4; pool->literals[entry] = inst.relocs[0].exp; pool->literals[entry].X_op = O_constant; pool->literals[entry].X_add_number = imm2; pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned; pool->literals[entry].X_md = 4; pool->alignment = 3; pool->next_free_entry += 1; } else { pool->literals[entry] = inst.relocs[0].exp; pool->literals[entry].X_md = 4; } #ifdef OBJ_ELF /* PR ld/12974: Record the location of the first source line to reference this entry in the literal pool. If it turns out during linking that the symbol does not exist we will be able to give an accurate line number for the (first use of the) missing reference. */ if (debug_type == DEBUG_DWARF2) dwarf2_where (pool->locs + entry); #endif pool->next_free_entry += 1; } else if (padding_slot_p) { pool->literals[entry] = inst.relocs[0].exp; pool->literals[entry].X_md = nbytes; } inst.relocs[0].exp.X_op = O_symbol; inst.relocs[0].exp.X_add_number = pool_size; inst.relocs[0].exp.X_add_symbol = pool->symbol; return SUCCESS; } bool tc_start_label_without_colon (void) { bool ret = true; if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME) { const char *label = input_line_pointer; while (!is_end_of_line[(int) label[-1]]) --label; if (*label == '.') { as_bad (_("Invalid label '%s'"), label); ret = false; } asmfunc_debug (label); asmfunc_state = WAITING_ENDASMFUNC; } return ret; } /* Can't use symbol_new here, so have to create a symbol and then at a later date assign it a value. That's what these functions do. */ static void symbol_locate (symbolS * symbolP, const char * name, /* It is copied, the caller can modify. */ segT segment, /* Segment identifier (SEG_). */ valueT valu, /* Symbol value. */ fragS * frag) /* Associated fragment. */ { size_t name_length; char * preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0. */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = (char *) obstack_finish (¬es); #ifdef tc_canonicalize_symbol_name preserved_copy_of_name = tc_canonicalize_symbol_name (preserved_copy_of_name); #endif S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers (symbolP); symbol_set_frag (symbolP, frag); /* Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #ifdef DEBUG_SYMS verify_symbol_chain (symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } static void s_ltorg (int ignored ATTRIBUTE_UNUSED) { unsigned int entry; literal_pool * pool; char sym_name[20]; demand_empty_rest_of_line (); pool = find_literal_pool (); if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0) return; /* Align pool as you have word accesses. Only make a frag if we have to. */ if (!need_pass_2) frag_align (pool->alignment, 0, 0); record_alignment (now_seg, 2); #ifdef OBJ_ELF seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA; make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now); #endif sprintf (sym_name, "$$lit_\002%x", pool->id); symbol_locate (pool->symbol, sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (pool->symbol); ARM_SET_THUMB (pool->symbol, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (pool->symbol, support_interwork); #endif for (entry = 0; entry < pool->next_free_entry; entry ++) { #ifdef OBJ_ELF if (debug_type == DEBUG_DWARF2) dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry); #endif /* First output the expression in the instruction to the pool. */ emit_expr (&(pool->literals[entry]), pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK); } /* Mark the pool as empty. */ pool->next_free_entry = 0; pool->symbol = NULL; } #ifdef OBJ_ELF /* Forward declarations for functions below, in the MD interface section. */ static void fix_new_arm (fragS *, int, short, expressionS *, int, int); static valueT create_unwind_entry (int); static void start_unwind_section (const segT, int); static void add_unwind_opcode (valueT, int); static void flush_pending_unwind (void); /* Directives: Data. */ static void s_arm_elf_cons (int nbytes) { expressionS exp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } #ifdef md_cons_align md_cons_align (nbytes); #endif mapping_state (MAP_DATA); do { int reloc; char *base = input_line_pointer; expression (& exp); if (exp.X_op != O_symbol) emit_expr (&exp, (unsigned int) nbytes); else { char *before_reloc = input_line_pointer; reloc = parse_reloc (&input_line_pointer); if (reloc == -1) { as_bad (_("unrecognized relocation suffix")); ignore_rest_of_line (); return; } else if (reloc == BFD_RELOC_UNUSED) emit_expr (&exp, (unsigned int) nbytes); else { reloc_howto_type *howto = (reloc_howto_type *) bfd_reloc_type_lookup (stdoutput, (bfd_reloc_code_real_type) reloc); int size = bfd_get_reloc_size (howto); if (reloc == BFD_RELOC_ARM_PLT32) { as_bad (_("(plt) is only valid on branch targets")); reloc = BFD_RELOC_UNUSED; size = 0; } if (size > nbytes) as_bad (ngettext ("%s relocations do not fit in %d byte", "%s relocations do not fit in %d bytes", nbytes), howto->name, nbytes); else { /* We've parsed an expression stopping at O_symbol. But there may be more expression left now that we have parsed the relocation marker. Parse it again. XXX Surely there is a cleaner way to do this. */ char *p = input_line_pointer; int offset; char *save_buf = XNEWVEC (char, input_line_pointer - base); memcpy (save_buf, base, input_line_pointer - base); memmove (base + (input_line_pointer - before_reloc), base, before_reloc - base); input_line_pointer = base + (input_line_pointer-before_reloc); expression (&exp); memcpy (base, save_buf, p - base); offset = nbytes - size; p = frag_more (nbytes); memset (p, 0, nbytes); fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, (enum bfd_reloc_code_real) reloc); free (save_buf); } } } } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer --; demand_empty_rest_of_line (); } /* Emit an expression containing a 32-bit thumb instruction. Implementation based on put_thumb32_insn. */ static void emit_thumb32_expr (expressionS * exp) { expressionS exp_high = *exp; exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16; emit_expr (& exp_high, (unsigned int) THUMB_SIZE); exp->X_add_number &= 0xffff; emit_expr (exp, (unsigned int) THUMB_SIZE); } /* Guess the instruction size based on the opcode. */ static int thumb_insn_size (int opcode) { if ((unsigned int) opcode < 0xe800u) return 2; else if ((unsigned int) opcode >= 0xe8000000u) return 4; else return 0; } static bool emit_insn (expressionS *exp, int nbytes) { int size = 0; if (exp->X_op == O_constant) { size = nbytes; if (size == 0) size = thumb_insn_size (exp->X_add_number); if (size != 0) { if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu) { as_bad (_(".inst.n operand too big. "\ "Use .inst.w instead")); size = 0; } else { if (now_pred.state == AUTOMATIC_PRED_BLOCK) set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0); else set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0); if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian) emit_thumb32_expr (exp); else emit_expr (exp, (unsigned int) size); it_fsm_post_encode (); } } else as_bad (_("cannot determine Thumb instruction size. " \ "Use .inst.n/.inst.w instead")); } else as_bad (_("constant expression required")); return (size != 0); } /* Like s_arm_elf_cons but do not use md_cons_align and set the mapping state to MAP_ARM/MAP_THUMB. */ static void s_arm_elf_inst (int nbytes) { if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } /* Calling mapping_state () here will not change ARM/THUMB, but will ensure not to be in DATA state. */ if (thumb_mode) mapping_state (MAP_THUMB); else { if (nbytes != 0) { as_bad (_("width suffixes are invalid in ARM mode")); ignore_rest_of_line (); return; } nbytes = 4; mapping_state (MAP_ARM); } dwarf2_emit_insn (0); do { expressionS exp; expression (& exp); if (! emit_insn (& exp, nbytes)) { ignore_rest_of_line (); return; } } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer --; demand_empty_rest_of_line (); } /* Parse a .rel31 directive. */ static void s_arm_rel31 (int ignored ATTRIBUTE_UNUSED) { expressionS exp; char *p; valueT highbit; highbit = 0; if (*input_line_pointer == '1') highbit = 0x80000000; else if (*input_line_pointer != '0') as_bad (_("expected 0 or 1")); input_line_pointer++; if (*input_line_pointer != ',') as_bad (_("missing comma")); input_line_pointer++; #ifdef md_flush_pending_output md_flush_pending_output (); #endif #ifdef md_cons_align md_cons_align (4); #endif mapping_state (MAP_DATA); expression (&exp); p = frag_more (4); md_number_to_chars (p, highbit, 4); fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1, BFD_RELOC_ARM_PREL31); demand_empty_rest_of_line (); } /* Directives: AEABI stack-unwind tables. */ /* Parse an unwind_fnstart directive. Simply records the current location. */ static void s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (unwind.proc_start) { as_bad (_("duplicate .fnstart directive")); return; } /* Mark the start of the function. */ unwind.proc_start = expr_build_dot (); /* Reset the rest of the unwind info. */ unwind.opcode_count = 0; unwind.table_entry = NULL; unwind.personality_routine = NULL; unwind.personality_index = -1; unwind.frame_size = 0; unwind.fp_offset = 0; unwind.fp_reg = REG_SP; unwind.fp_used = 0; unwind.sp_restored = 0; } /* Parse a handlerdata directive. Creates the exception handling table entry for the function. */ static void s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (!unwind.proc_start) as_bad (MISSING_FNSTART); if (unwind.table_entry) as_bad (_("duplicate .handlerdata directive")); create_unwind_entry (1); } /* Parse an unwind_fnend directive. Generates the index table entry. */ static void s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED) { long where; char *ptr; valueT val; unsigned int marked_pr_dependency; demand_empty_rest_of_line (); if (!unwind.proc_start) { as_bad (_(".fnend directive without .fnstart")); return; } /* Add eh table entry. */ if (unwind.table_entry == NULL) val = create_unwind_entry (0); else val = 0; /* Add index table entry. This is two words. */ start_unwind_section (unwind.saved_seg, 1); frag_align (2, 0, 0); record_alignment (now_seg, 2); ptr = frag_more (8); memset (ptr, 0, 8); where = frag_now_fix () - 8; /* Self relative offset of the function start. */ fix_new (frag_now, where, 4, unwind.proc_start, 0, 1, BFD_RELOC_ARM_PREL31); /* Indicate dependency on EHABI-defined personality routines to the linker, if it hasn't been done already. */ marked_pr_dependency = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency; if (unwind.personality_index >= 0 && unwind.personality_index < 3 && !(marked_pr_dependency & (1 << unwind.personality_index))) { static const char *const name[] = { "__aeabi_unwind_cpp_pr0", "__aeabi_unwind_cpp_pr1", "__aeabi_unwind_cpp_pr2" }; symbolS *pr = symbol_find_or_make (name[unwind.personality_index]); fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE); seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency |= 1 << unwind.personality_index; } if (val) /* Inline exception table entry. */ md_number_to_chars (ptr + 4, val, 4); else /* Self relative offset of the table entry. */ fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1, BFD_RELOC_ARM_PREL31); /* Restore the original section. */ subseg_set (unwind.saved_seg, unwind.saved_subseg); unwind.proc_start = NULL; } /* Parse an unwind_cantunwind directive. */ static void s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (!unwind.proc_start) as_bad (MISSING_FNSTART); if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("personality routine specified for cantunwind frame")); unwind.personality_index = -2; } /* Parse a personalityindex directive. */ static void s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED) { expressionS exp; if (!unwind.proc_start) as_bad (MISSING_FNSTART); if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personalityindex directive")); expression (&exp); if (exp.X_op != O_constant || exp.X_add_number < 0 || exp.X_add_number > 15) { as_bad (_("bad personality routine number")); ignore_rest_of_line (); return; } unwind.personality_index = exp.X_add_number; demand_empty_rest_of_line (); } /* Parse a personality directive. */ static void s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED) { char *name, *p, c; if (!unwind.proc_start) as_bad (MISSING_FNSTART); if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personality directive")); c = get_symbol_name (& name); p = input_line_pointer; if (c == '"') ++ input_line_pointer; unwind.personality_routine = symbol_find_or_make (name); *p = c; demand_empty_rest_of_line (); } /* Parse a directive saving pseudo registers. */ static void s_arm_unwind_save_pseudo (int regno) { valueT op; switch (regno) { case REG_RA_AUTH_CODE: /* Opcode for restoring RA_AUTH_CODE. */ op = 0xb4; add_unwind_opcode (op, 1); break; default: as_bad (_("Unknown register no. encountered: %d\n"), regno); } } /* Parse a directive saving core registers. */ static void s_arm_unwind_save_core (long range) { valueT op; int n; /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...} into .unwind_save {..., sp...}. We aren't bothered about the value of ip because it is clobbered by calls. */ if (unwind.sp_restored && unwind.fp_reg == 12 && (range & 0x3000) == 0x1000) { unwind.opcode_count--; unwind.sp_restored = 0; range = (range | 0x2000) & ~0x1000; unwind.pending_offset = 0; } /* Pop r4-r15. */ if (range & 0xfff0) { /* See if we can use the short opcodes. These pop a block of up to 8 registers starting with r4, plus maybe r14. */ for (n = 0; n < 8; n++) { /* Break at the first non-saved register. */ if ((range & (1 << (n + 4))) == 0) break; } /* See if there are any other bits set. */ if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0) { /* Use the long form. */ op = 0x8000 | ((range >> 4) & 0xfff); add_unwind_opcode (op, 2); } else { /* Use the short form. */ if (range & 0x4000) op = 0xa8; /* Pop r14. */ else op = 0xa0; /* Do not pop r14. */ op |= (n - 1); add_unwind_opcode (op, 1); } } /* Pop r0-r3. */ if (range & 0xf) { op = 0xb100 | (range & 0xf); add_unwind_opcode (op, 2); } /* Record the number of bytes pushed. */ for (n = 0; n < 16; n++) { if (range & (1 << n)) unwind.frame_size += 4; } } /* Implement correct handling of .save lists enabling the split into sublists where necessary, while preserving correct sublist ordering. */ static void parse_dot_save (char **str_p, int prev_reg) { long core_regs = 0; int reg; int in_range = 0; if (**str_p == ',') *str_p += 1; if (**str_p == '}') { *str_p += 1; return; } while ((reg = arm_reg_parse (str_p, REG_TYPE_RN)) != FAIL) { if (!in_range) { if (core_regs & (1 << reg)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), reg); else if (reg <= prev_reg) as_tsktsk (_("Warning: register list not in ascending order")); core_regs |= (1 << reg); prev_reg = reg; if (skip_past_char(str_p, '-') != FAIL) in_range = 1; else if (skip_past_comma(str_p) == FAIL) first_error (_("bad register list")); } else { int i; if (reg <= prev_reg) first_error (_("bad range in register list")); for (i = prev_reg + 1; i <= reg; i++) { if (core_regs & (1 << i)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), i); else core_regs |= 1 << i; } in_range = 0; } } if (core_regs) { /* Higher register numbers go in higher memory addresses. When splitting a list, right-most sublist should therefore be .saved first. Use recursion for this. */ parse_dot_save (str_p, reg); /* We're back from recursion, so emit .save insn for sublist. */ s_arm_unwind_save_core (core_regs); return; } /* Handle pseudo-regs, under assumption these are emitted singly. */ else if ((reg = arm_reg_parse (str_p, REG_TYPE_PSEUDO)) != FAIL) { /* recurse for remainder of input. Note: No assumption is made regarding which register in core register set holds pseudo-register. It's not considered in ordering check beyond ensuring it's not sandwiched between 2 consecutive registers. */ parse_dot_save (str_p, prev_reg + 1); s_arm_unwind_save_pseudo (reg); return; } else as_bad (BAD_SYNTAX); } /* Parse a directive saving VFP registers for ARMv6 and above. */ static void s_arm_unwind_save_vfp_armv6 (void) { int count; unsigned int start; valueT op; int num_vfpv3_regs = 0; int num_regs_below_16; bool partial_match; count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D, &partial_match); if (count == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather than FSTMX/FLDMX-style ones). */ /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */ if (start >= 16) num_vfpv3_regs = count; else if (start + count > 16) num_vfpv3_regs = start + count - 16; if (num_vfpv3_regs > 0) { int start_offset = start > 16 ? start - 16 : 0; op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1); add_unwind_opcode (op, 2); } /* Generate opcode for registers numbered in the range 0 .. 15. */ num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count; gas_assert (num_regs_below_16 + num_vfpv3_regs == count); if (num_regs_below_16 > 0) { op = 0xc900 | (start << 4) | (num_regs_below_16 - 1); add_unwind_opcode (op, 2); } unwind.frame_size += count * 8; } /* Parse a directive saving VFP registers for pre-ARMv6. */ static void s_arm_unwind_save_vfp (void) { int count; unsigned int reg; valueT op; bool partial_match; count = parse_vfp_reg_list (&input_line_pointer, ®, REGLIST_VFP_D, &partial_match); if (count == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == 8) { /* Short form. */ op = 0xb8 | (count - 1); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xb300 | (reg << 4) | (count - 1); add_unwind_opcode (op, 2); } unwind.frame_size += count * 8 + 4; } /* Parse a directive saving iWMMXt data registers. */ static void s_arm_unwind_save_mmxwr (void) { int reg; int hi_reg; int i; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (reg == FAIL) { as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (hi_reg == FAIL) { as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); skip_past_char (&input_line_pointer, '}'); demand_empty_rest_of_line (); /* Generate any deferred opcodes because we're going to be looking at the list. */ flush_pending_unwind (); for (i = 0; i < 16; i++) { if (mask & (1 << i)) unwind.frame_size += 8; } /* Attempt to combine with a previous opcode. We do this because gcc likes to output separate unwind directives for a single block of registers. */ if (unwind.opcode_count > 0) { i = unwind.opcodes[unwind.opcode_count - 1]; if ((i & 0xf8) == 0xc0) { i &= 7; /* Only merge if the blocks are contiguous. */ if (i < 6) { if ((mask & 0xfe00) == (1 << 9)) { mask |= ((1 << (i + 11)) - 1) & 0xfc00; unwind.opcode_count--; } } else if (i == 6 && unwind.opcode_count >= 2) { i = unwind.opcodes[unwind.opcode_count - 2]; reg = i >> 4; i &= 0xf; op = 0xffff << (reg - 1); if (reg > 0 && ((mask & op) == (1u << (reg - 1)))) { op = (1 << (reg + i + 1)) - 1; op &= ~((1 << reg) - 1); mask |= op; unwind.opcode_count -= 2; } } } } hi_reg = 15; /* We want to generate opcodes in the order the registers have been saved, ie. descending order. */ for (reg = 15; reg >= -1; reg--) { /* Save registers in blocks. */ if (reg < 0 || !(mask & (1 << reg))) { /* We found an unsaved reg. Generate opcodes to save the preceding block. */ if (reg != hi_reg) { if (reg == 9) { /* Short form. */ op = 0xc0 | (hi_reg - 10); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1); add_unwind_opcode (op, 2); } } hi_reg = reg - 1; } } return; error: ignore_rest_of_line (); } static void s_arm_unwind_save_mmxwcg (void) { int reg; int hi_reg; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; skip_whitespace (input_line_pointer); do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (reg == FAIL) { as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } reg -= 8; if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (hi_reg == FAIL) { as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); skip_past_char (&input_line_pointer, '}'); demand_empty_rest_of_line (); /* Generate any deferred opcodes because we're going to be looking at the list. */ flush_pending_unwind (); for (reg = 0; reg < 16; reg++) { if (mask & (1 << reg)) unwind.frame_size += 4; } op = 0xc700 | mask; add_unwind_opcode (op, 2); return; error: ignore_rest_of_line (); } /* Parse an unwind_save directive. If the argument is non-zero, this is a .vsave directive. */ static void s_arm_unwind_save (int arch_v6) { char *peek; struct reg_entry *reg; bool had_brace = false; if (!unwind.proc_start) as_bad (MISSING_FNSTART); /* Figure out what sort of save we have. */ peek = input_line_pointer; if (*peek == '{') { had_brace = true; peek++; } reg = arm_reg_parse_multi (&peek); if (!reg) { as_bad (_("register expected")); ignore_rest_of_line (); return; } switch (reg->type) { case REG_TYPE_PSEUDO: case REG_TYPE_RN: { if (had_brace) input_line_pointer++; parse_dot_save (&input_line_pointer, -1); demand_empty_rest_of_line (); return; } case REG_TYPE_VFD: if (arch_v6) s_arm_unwind_save_vfp_armv6 (); else s_arm_unwind_save_vfp (); return; case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return; case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return; default: as_bad (_(".unwind_save does not support this kind of register")); ignore_rest_of_line (); } } /* Parse an unwind_movsp directive. */ static void s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED) { int reg; valueT op; int offset; if (!unwind.proc_start) as_bad (MISSING_FNSTART); reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (reg == FAIL) { as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN])); ignore_rest_of_line (); return; } /* Optional constant. */ if (skip_past_comma (&input_line_pointer) != FAIL) { if (immediate_for_directive (&offset) == FAIL) return; } else offset = 0; demand_empty_rest_of_line (); if (reg == REG_SP || reg == REG_PC) { as_bad (_("SP and PC not permitted in .unwind_movsp directive")); return; } if (unwind.fp_reg != REG_SP) as_bad (_("unexpected .unwind_movsp directive")); /* Generate opcode to restore the value. */ op = 0x90 | reg; add_unwind_opcode (op, 1); /* Record the information for later. */ unwind.fp_reg = reg; unwind.fp_offset = unwind.frame_size - offset; unwind.sp_restored = 1; } /* Parse an unwind_pad directive. */ static void s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED) { int offset; if (!unwind.proc_start) as_bad (MISSING_FNSTART); if (immediate_for_directive (&offset) == FAIL) return; if (offset & 3) { as_bad (_("stack increment must be multiple of 4")); ignore_rest_of_line (); return; } /* Don't generate any opcodes, just record the details for later. */ unwind.frame_size += offset; unwind.pending_offset += offset; demand_empty_rest_of_line (); } /* Parse an unwind_pacspval directive. */ static void s_arm_unwind_pacspval (int ignored ATTRIBUTE_UNUSED) { valueT op; if (!unwind.proc_start) as_bad (MISSING_FNSTART); demand_empty_rest_of_line (); op = 0xb5; add_unwind_opcode (op, 1); } /* Parse an unwind_setfp directive. */ static void s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED) { int sp_reg; int fp_reg; int offset; if (!unwind.proc_start) as_bad (MISSING_FNSTART); fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (skip_past_comma (&input_line_pointer) == FAIL) sp_reg = FAIL; else sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (fp_reg == FAIL || sp_reg == FAIL) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } /* Optional constant. */ if (skip_past_comma (&input_line_pointer) != FAIL) { if (immediate_for_directive (&offset) == FAIL) return; } else offset = 0; demand_empty_rest_of_line (); if (sp_reg != REG_SP && sp_reg != unwind.fp_reg) { as_bad (_("register must be either sp or set by a previous" "unwind_movsp directive")); return; } /* Don't generate any opcodes, just record the information for later. */ unwind.fp_reg = fp_reg; unwind.fp_used = 1; if (sp_reg == REG_SP) unwind.fp_offset = unwind.frame_size - offset; else unwind.fp_offset -= offset; } /* Parse an unwind_raw directive. */ static void s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED) { expressionS exp; /* This is an arbitrary limit. */ unsigned char op[16]; int count; if (!unwind.proc_start) as_bad (MISSING_FNSTART); expression (&exp); if (exp.X_op == O_constant && skip_past_comma (&input_line_pointer) != FAIL) { unwind.frame_size += exp.X_add_number; expression (&exp); } else exp.X_op = O_illegal; if (exp.X_op != O_constant) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } count = 0; /* Parse the opcode. */ for (;;) { if (count >= 16) { as_bad (_("unwind opcode too long")); ignore_rest_of_line (); } if (exp.X_op != O_constant || exp.X_add_number & ~0xff) { as_bad (_("invalid unwind opcode")); ignore_rest_of_line (); return; } op[count++] = exp.X_add_number; /* Parse the next byte. */ if (skip_past_comma (&input_line_pointer) == FAIL) break; expression (&exp); } /* Add the opcode bytes in reverse order. */ while (count--) add_unwind_opcode (op[count], 1); demand_empty_rest_of_line (); } /* Parse a .eabi_attribute directive. */ static void s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED) { int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC); if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES) attributes_set_explicitly[tag] = 1; } /* Emit a tls fix for the symbol. */ static void s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED) { char *p; expressionS exp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif #ifdef md_cons_align md_cons_align (4); #endif /* Since we're just labelling the code, there's no need to define a mapping symbol. */ expression (&exp); p = obstack_next_free (&frchain_now->frch_obstack); fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0, thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ : BFD_RELOC_ARM_TLS_DESCSEQ); } #endif /* OBJ_ELF */ static void s_arm_arch (int); static void s_arm_object_arch (int); static void s_arm_cpu (int); static void s_arm_fpu (int); static void s_arm_arch_extension (int); #ifdef TE_PE static void pe_directive_secrel (int dummy ATTRIBUTE_UNUSED) { expressionS exp; do { expression (&exp); if (exp.X_op == O_symbol) exp.X_op = O_secrel; emit_expr (&exp, 4); } while (*input_line_pointer++ == ','); input_line_pointer--; demand_empty_rest_of_line (); } #endif /* TE_PE */ int arm_is_largest_exponent_ok (int precision) { /* precision == 1 ensures that this will only return true for 16 bit floats. */ return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE); } static void set_fp16_format (int dummy ATTRIBUTE_UNUSED) { char saved_char; char* name; enum fp_16bit_format new_format; new_format = ARM_FP16_FORMAT_DEFAULT; name = input_line_pointer; while (*input_line_pointer && !ISSPACE (*input_line_pointer)) input_line_pointer++; saved_char = *input_line_pointer; *input_line_pointer = 0; if (strcasecmp (name, "ieee") == 0) new_format = ARM_FP16_FORMAT_IEEE; else if (strcasecmp (name, "alternative") == 0) new_format = ARM_FP16_FORMAT_ALTERNATIVE; else { as_bad (_("unrecognised float16 format \"%s\""), name); goto cleanup; } /* Only set fp16_format if it is still the default (aka not already been set yet). */ if (fp16_format == ARM_FP16_FORMAT_DEFAULT) fp16_format = new_format; else { if (new_format != fp16_format) as_warn (_("float16 format cannot be set more than once, ignoring.")); } cleanup: *input_line_pointer = saved_char; ignore_rest_of_line (); } static void s_arm_float_cons (int float_type) { /* We still parse the directive on error, so that any syntactic issues are picked up. */ if (ARM_FEATURE_ZERO (selected_fpu)) as_bad (_("the floating-point format has not been set (or has been disabled)")); float_cons (float_type); } /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function. */ const pseudo_typeS md_pseudo_table[] = { /* Never called because '.req' does not start a line. */ { "req", s_req, 0 }, /* Following two are likewise never called. */ { "dn", s_dn, 0 }, { "qn", s_qn, 0 }, { "unreq", s_unreq, 0 }, { "align", s_align_ptwo, 2 }, { "arm", s_arm, 0 }, { "thumb", s_thumb, 0 }, { "code", s_code, 0 }, { "force_thumb", s_force_thumb, 0 }, { "thumb_func", s_thumb_func, 0 }, { "thumb_set", s_thumb_set, 0 }, { "even", s_even, 0 }, { "ltorg", s_ltorg, 0 }, { "pool", s_ltorg, 0 }, { "syntax", s_syntax, 0 }, { "cpu", s_arm_cpu, 0 }, { "arch", s_arm_arch, 0 }, { "object_arch", s_arm_object_arch, 0 }, { "fpu", s_arm_fpu, 0 }, { "arch_extension", s_arm_arch_extension, 0 }, #ifdef OBJ_ELF { "word", s_arm_elf_cons, 4 }, { "long", s_arm_elf_cons, 4 }, { "inst.n", s_arm_elf_inst, 2 }, { "inst.w", s_arm_elf_inst, 4 }, { "inst", s_arm_elf_inst, 0 }, { "rel31", s_arm_rel31, 0 }, { "fnstart", s_arm_unwind_fnstart, 0 }, { "fnend", s_arm_unwind_fnend, 0 }, { "cantunwind", s_arm_unwind_cantunwind, 0 }, { "personality", s_arm_unwind_personality, 0 }, { "personalityindex", s_arm_unwind_personalityindex, 0 }, { "handlerdata", s_arm_unwind_handlerdata, 0 }, { "save", s_arm_unwind_save, 0 }, { "vsave", s_arm_unwind_save, 1 }, { "movsp", s_arm_unwind_movsp, 0 }, { "pad", s_arm_unwind_pad, 0 }, { "pacspval", s_arm_unwind_pacspval, 0 }, { "setfp", s_arm_unwind_setfp, 0 }, { "unwind_raw", s_arm_unwind_raw, 0 }, { "eabi_attribute", s_arm_eabi_attribute, 0 }, { "tlsdescseq", s_arm_tls_descseq, 0 }, #else { "word", cons, 4}, /* These are used for dwarf. */ {"2byte", cons, 2}, {"4byte", cons, 4}, {"8byte", cons, 8}, /* These are used for dwarf2. */ { "file", dwarf2_directive_file, 0 }, { "loc", dwarf2_directive_loc, 0 }, { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 }, #endif /* Override the default float_cons handling so that we can validate the FPU setting. */ { "float", s_arm_float_cons, 'f' }, { "single", s_arm_float_cons, 'f' }, { "double", s_arm_float_cons, 'd' }, { "dc.s", s_arm_float_cons, 'f' }, { "dc.d", s_arm_float_cons, 'd' }, { "extend", s_arm_float_cons, 'x' }, { "ldouble", s_arm_float_cons, 'x' }, { "packed", s_arm_float_cons, 'p' }, { "bfloat16", s_arm_float_cons, 'b' }, #ifdef TE_PE {"secrel32", pe_directive_secrel, 0}, #endif /* These are for compatibility with CodeComposer Studio. */ {"ref", s_ccs_ref, 0}, {"def", s_ccs_def, 0}, {"asmfunc", s_ccs_asmfunc, 0}, {"endasmfunc", s_ccs_endasmfunc, 0}, {"float16", s_arm_float_cons, 'h' }, {"float16_format", set_fp16_format, 0 }, { 0, 0, 0 } }; /* Parser functions used exclusively in instruction operands. */ /* Generic immediate-value read function for use in insn parsing. STR points to the beginning of the immediate (the leading #); VAL receives the value; if the value is outside [MIN, MAX] issue an error. PREFIX_OPT is true if the immediate prefix is optional. */ static int parse_immediate (char **str, int *val, int min, int max, bool prefix_opt) { expressionS exp; my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX); if (exp.X_op != O_constant) { inst.error = _("constant expression required"); return FAIL; } if (exp.X_add_number < min || exp.X_add_number > max) { inst.error = _("immediate value out of range"); return FAIL; } *val = exp.X_add_number; return SUCCESS; } /* Less-generic immediate-value read function with the possibility of loading a big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate instructions. Puts the result directly in inst.operands[i]. */ static int parse_big_immediate (char **str, int i, expressionS *in_exp, bool allow_symbol_p) { expressionS exp; expressionS *exp_p = in_exp ? in_exp : &exp; char *ptr = *str; my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG); if (exp_p->X_op == O_constant) { inst.operands[i].imm = exp_p->X_add_number & 0xffffffff; /* If we're on a 64-bit host, then a 64-bit number can be returned using O_constant. We have to be careful not to break compilation for 32-bit X_add_number, though. */ if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0) { /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */ inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16) & 0xffffffff); inst.operands[i].regisimm = 1; } } else if (exp_p->X_op == O_big && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32) { unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0; /* Bignums have their least significant bits in generic_bignum[0]. Make sure we put 32 bits in imm and 32 bits in reg, in a (hopefully) portable way. */ gas_assert (parts != 0); /* Make sure that the number is not too big. PR 11972: Bignums can now be sign-extended to the size of a .octa so check that the out of range bits are all zero or all one. */ if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64) { LITTLENUM_TYPE m = -1; if (generic_bignum[parts * 2] != 0 && generic_bignum[parts * 2] != m) return FAIL; for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++) if (generic_bignum[j] != generic_bignum[j-1]) return FAIL; } inst.operands[i].imm = 0; for (j = 0; j < parts; j++, idx++) inst.operands[i].imm |= ((unsigned) generic_bignum[idx] << (LITTLENUM_NUMBER_OF_BITS * j)); inst.operands[i].reg = 0; for (j = 0; j < parts; j++, idx++) inst.operands[i].reg |= ((unsigned) generic_bignum[idx] << (LITTLENUM_NUMBER_OF_BITS * j)); inst.operands[i].regisimm = 1; } else if (!(exp_p->X_op == O_symbol && allow_symbol_p)) return FAIL; *str = ptr; return SUCCESS; } /* Returns 1 if a number has "quarter-precision" float format 0baBbbbbbc defgh000 00000000 00000000. */ static int is_quarter_float (unsigned imm) { int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000; return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0; } /* Detect the presence of a floating point or integer zero constant, i.e. #0.0 or #0. */ static bool parse_ifimm_zero (char **in) { int error_code; if (!is_immediate_prefix (**in)) { /* In unified syntax, all prefixes are optional. */ if (!unified_syntax) return false; } else ++*in; /* Accept #0x0 as a synonym for #0. */ if (startswith (*in, "0x")) { int val; if (parse_immediate (in, &val, 0, 0, true) == FAIL) return false; return true; } error_code = atof_generic (in, ".", EXP_CHARS, &generic_floating_point_number); if (!error_code && generic_floating_point_number.sign == '+' && (generic_floating_point_number.low > generic_floating_point_number.leader)) return true; return false; } /* Parse an 8-bit "quarter-precision" floating point number of the form: 0baBbbbbbc defgh000 00000000 00000000. The zero and minus-zero cases need special handling, since they can't be encoded in the "quarter-precision" float format, but can nonetheless be loaded as integer constants. */ static unsigned parse_qfloat_immediate (char **ccp, int *immed) { char *str = *ccp; char *fpnum; LITTLENUM_TYPE words[MAX_LITTLENUMS]; int found_fpchar = 0; skip_past_char (&str, '#'); /* We must not accidentally parse an integer as a floating-point number. Make sure that the value we parse is not an integer by checking for special characters '.' or 'e'. FIXME: This is a horrible hack, but doing better is tricky because type information isn't in a very usable state at parse time. */ fpnum = str; skip_whitespace (fpnum); if (startswith (fpnum, "0x")) return FAIL; else { for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++) if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E') { found_fpchar = 1; break; } if (!found_fpchar) return FAIL; } if ((str = atof_ieee (str, 's', words)) != NULL) { unsigned fpword = 0; int i; /* Our FP word must be 32 bits (single-precision FP). */ for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++) { fpword <<= LITTLENUM_NUMBER_OF_BITS; fpword |= words[i]; } if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0) *immed = fpword; else return FAIL; *ccp = str; return SUCCESS; } return FAIL; } /* Shift operands. */ enum shift_kind { SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW }; struct asm_shift_name { const char *name; enum shift_kind kind; }; /* Third argument to parse_shift. */ enum parse_shift_mode { NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */ SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */ SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */ SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */ SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */ SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */ }; /* Parse a specifier on an ARM data processing instruction. This has three forms: (LSL|LSR|ASL|ASR|ROR) Rs (LSL|LSR|ASL|ASR|ROR) #imm RRX Note that ASL is assimilated to LSL in the instruction encoding, and RRX to ROR #0 (which cannot be written as such). */ static int parse_shift (char **str, int i, enum parse_shift_mode mode) { const struct asm_shift_name *shift_name; enum shift_kind shift; char *s = *str; char *p = s; int reg; for (p = *str; ISALPHA (*p); p++) ; if (p == *str) { inst.error = _("shift expression expected"); return FAIL; } shift_name = (const struct asm_shift_name *) str_hash_find_n (arm_shift_hsh, *str, p - *str); if (shift_name == NULL) { inst.error = _("shift expression expected"); return FAIL; } shift = shift_name->kind; switch (mode) { case NO_SHIFT_RESTRICT: case SHIFT_IMMEDIATE: if (shift == SHIFT_UXTW) { inst.error = _("'UXTW' not allowed here"); return FAIL; } break; case SHIFT_LSL_OR_ASR_IMMEDIATE: if (shift != SHIFT_LSL && shift != SHIFT_ASR) { inst.error = _("'LSL' or 'ASR' required"); return FAIL; } break; case SHIFT_LSL_IMMEDIATE: if (shift != SHIFT_LSL) { inst.error = _("'LSL' required"); return FAIL; } break; case SHIFT_ASR_IMMEDIATE: if (shift != SHIFT_ASR) { inst.error = _("'ASR' required"); return FAIL; } break; case SHIFT_UXTW_IMMEDIATE: if (shift != SHIFT_UXTW) { inst.error = _("'UXTW' required"); return FAIL; } break; default: abort (); } if (shift != SHIFT_RRX) { /* Whitespace can appear here if the next thing is a bare digit. */ skip_whitespace (p); if (mode == NO_SHIFT_RESTRICT && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; } else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX)) return FAIL; } inst.operands[i].shift_kind = shift; inst.operands[i].shifted = 1; *str = p; return SUCCESS; } /* Parse a for an ARM data processing instruction: # #, , where is defined by parse_shift above, and is a multiple of 2 between 0 and 30. Validation of immediate operands is deferred to md_apply_fix. */ static int parse_shifter_operand (char **str, int i) { int value; expressionS exp; if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL) { inst.operands[i].reg = value; inst.operands[i].isreg = 1; /* parse_shift will override this if appropriate */ inst.relocs[0].exp.X_op = O_constant; inst.relocs[0].exp.X_add_number = 0; if (skip_past_comma (str) == FAIL) return SUCCESS; /* Shift operation on register. */ return parse_shift (str, i, NO_SHIFT_RESTRICT); } if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX)) return FAIL; if (skip_past_comma (str) == SUCCESS) { /* #x, y -- ie explicit rotation by Y. */ if (my_get_expression (&exp, str, GE_NO_PREFIX)) return FAIL; if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant) { inst.error = _("constant expression expected"); return FAIL; } value = exp.X_add_number; if (value < 0 || value > 30 || value % 2 != 0) { inst.error = _("invalid rotation"); return FAIL; } if (inst.relocs[0].exp.X_add_number < 0 || inst.relocs[0].exp.X_add_number > 255) { inst.error = _("invalid constant"); return FAIL; } /* Encode as specified. */ inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7; return SUCCESS; } inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE; inst.relocs[0].pc_rel = 0; return SUCCESS; } /* Group relocation information. Each entry in the table contains the textual name of the relocation as may appear in assembler source and must end with a colon. Along with this textual name are the relocation codes to be used if the corresponding instruction is an ALU instruction (ADD or SUB only), an LDR, an LDRS, or an LDC. */ struct group_reloc_table_entry { const char *name; int alu_code; int ldr_code; int ldrs_code; int ldc_code; }; typedef enum { /* Varieties of non-ALU group relocation. */ GROUP_LDR, GROUP_LDRS, GROUP_LDC, GROUP_MVE } group_reloc_type; static struct group_reloc_table_entry group_reloc_table[] = { /* Program counter relative: */ { "pc_g0_nc", BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "pc_g0", BFD_RELOC_ARM_ALU_PC_G0, /* ALU */ BFD_RELOC_ARM_LDR_PC_G0, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */ { "pc_g1_nc", BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "pc_g1", BFD_RELOC_ARM_ALU_PC_G1, /* ALU */ BFD_RELOC_ARM_LDR_PC_G1, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */ { "pc_g2", BFD_RELOC_ARM_ALU_PC_G2, /* ALU */ BFD_RELOC_ARM_LDR_PC_G2, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */ /* Section base relative */ { "sb_g0_nc", BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "sb_g0", BFD_RELOC_ARM_ALU_SB_G0, /* ALU */ BFD_RELOC_ARM_LDR_SB_G0, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */ { "sb_g1_nc", BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "sb_g1", BFD_RELOC_ARM_ALU_SB_G1, /* ALU */ BFD_RELOC_ARM_LDR_SB_G1, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */ { "sb_g2", BFD_RELOC_ARM_ALU_SB_G2, /* ALU */ BFD_RELOC_ARM_LDR_SB_G2, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */ /* Absolute thumb alu relocations. */ { "lower0_7", BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */ 0, /* LDR. */ 0, /* LDRS. */ 0 }, /* LDC. */ { "lower8_15", BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */ 0, /* LDR. */ 0, /* LDRS. */ 0 }, /* LDC. */ { "upper0_7", BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */ 0, /* LDR. */ 0, /* LDRS. */ 0 }, /* LDC. */ { "upper8_15", BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */ 0, /* LDR. */ 0, /* LDRS. */ 0 } }; /* LDC. */ /* Given the address of a pointer pointing to the textual name of a group relocation as may appear in assembler source, attempt to find its details in group_reloc_table. The pointer will be updated to the character after the trailing colon. On failure, FAIL will be returned; SUCCESS otherwise. On success, *entry will be updated to point at the relevant group_reloc_table entry. */ static int find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out) { unsigned int i; for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++) { int length = strlen (group_reloc_table[i].name); if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 && (*str)[length] == ':') { *out = &group_reloc_table[i]; *str += (length + 1); return SUCCESS; } } return FAIL; } /* Parse a for an ARM data processing instruction (as for parse_shifter_operand) where group relocations are allowed: # #, #:: , where is one of the strings defined in group_reloc_table. The hashes are optional. Everything else is as for parse_shifter_operand. */ static parse_operand_result parse_shifter_operand_group_reloc (char **str, int i) { /* Determine if we have the sequence of characters #: or just : coming next. If we do, then we check for a group relocation. If we don't, punt the whole lot to parse_shifter_operand. */ if (((*str)[0] == '#' && (*str)[1] == ':') || (*str)[0] == ':') { struct group_reloc_table_entry *entry; if ((*str)[0] == '#') (*str) += 2; else (*str)++; /* Try to parse a group relocation. Anything else is an error. */ if (find_group_reloc_table_entry (str, &entry) == FAIL) { inst.error = _("unknown group relocation"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } /* We now have the group relocation table entry corresponding to the name in the assembler source. Next, we parse the expression. */ if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX)) return PARSE_OPERAND_FAIL_NO_BACKTRACK; /* Record the relocation type (always the ALU variant here). */ inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code; gas_assert (inst.relocs[0].type != 0); return PARSE_OPERAND_SUCCESS; } else return parse_shifter_operand (str, i) == SUCCESS ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL; /* Never reached. */ } /* Parse a Neon alignment expression. Information is written to inst.operands[i]. We assume the initial ':' has been skipped. align .imm = align << 8, .immisalign=1, .preind=0 */ static parse_operand_result parse_neon_alignment (char **str, int i) { char *p = *str; expressionS exp; my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { inst.error = _("alignment must be constant"); return PARSE_OPERAND_FAIL; } inst.operands[i].imm = exp.X_add_number << 8; inst.operands[i].immisalign = 1; /* Alignments are not pre-indexes. */ inst.operands[i].preind = 0; *str = p; return PARSE_OPERAND_SUCCESS; } /* Parse all forms of an ARM address expression. Information is written to inst.operands[i] and/or inst.relocs[0]. Preindexed addressing (.preind=1): [Rn, #offset] .reg=Rn .relocs[0].exp=offset [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .relocs[0].exp=shift_imm These three may have a trailing ! which causes .writeback to be set also. Postindexed addressing (.postind=1, .writeback=1): [Rn], #offset .reg=Rn .relocs[0].exp=offset [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .relocs[0].exp=shift_imm Unindexed addressing (.preind=0, .postind=0): [Rn], {option} .reg=Rn .imm=option .immisreg=0 Other: [Rn]{!} shorthand for [Rn,#0]{!} =immediate .isreg=0 .relocs[0].exp=immediate label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label It is the caller's responsibility to check for addressing modes not supported by the instruction, and to set inst.relocs[0].type. */ static parse_operand_result parse_address_main (char **str, int i, int group_relocations, group_reloc_type group_type) { char *p = *str; int reg; if (skip_past_char (&p, '[') == FAIL) { if (group_type == GROUP_MVE && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { /* [r0-r15] expected as argument but receiving r0-r15 without [] brackets. */ inst.error = BAD_SYNTAX; return PARSE_OPERAND_FAIL; } else if (skip_past_char (&p, '=') == FAIL) { /* Bare address - translate to PC-relative offset. */ inst.relocs[0].pc_rel = 1; inst.operands[i].reg = REG_PC; inst.operands[i].isreg = 1; inst.operands[i].preind = 1; if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG)) return PARSE_OPERAND_FAIL; } else if (parse_big_immediate (&p, i, &inst.relocs[0].exp, /*allow_symbol_p=*/true)) return PARSE_OPERAND_FAIL; *str = p; return PARSE_OPERAND_SUCCESS; } /* PR gas/14887: Allow for whitespace after the opening bracket. */ skip_whitespace (p); if (group_type == GROUP_MVE) { enum arm_reg_type rtype = REG_TYPE_MQ; struct neon_type_el et; if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL) { inst.operands[i].isquad = 1; } else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = BAD_ADDR_MODE; return PARSE_OPERAND_FAIL; } } else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { if (group_type == GROUP_MVE) inst.error = BAD_ADDR_MODE; else inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return PARSE_OPERAND_FAIL; } inst.operands[i].reg = reg; inst.operands[i].isreg = 1; if (skip_past_comma (&p) == SUCCESS) { inst.operands[i].preind = 1; if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; enum arm_reg_type rtype = REG_TYPE_MQ; struct neon_type_el et; if (group_type == GROUP_MVE && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL) { inst.operands[i].immisreg = 2; inst.operands[i].imm = reg; if (skip_past_comma (&p) == SUCCESS) { if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS) { inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5; inst.relocs[0].exp.X_add_number = 0; } else return PARSE_OPERAND_FAIL; } } else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return PARSE_OPERAND_FAIL; } else if (skip_past_char (&p, ':') == SUCCESS) { /* FIXME: '@' should be used here, but it's filtered out by generic code before we get to see it here. This may be subject to change. */ parse_operand_result result = parse_neon_alignment (&p, i); if (result != PARSE_OPERAND_SUCCESS) return result; } else { if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (group_relocations && ((*p == '#' && *(p + 1) == ':') || *p == ':')) { struct group_reloc_table_entry *entry; /* Skip over the #: or : sequence. */ if (*p == '#') p += 2; else p++; /* Try to parse a group relocation. Anything else is an error. */ if (find_group_reloc_table_entry (&p, &entry) == FAIL) { inst.error = _("unknown group relocation"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } /* We now have the group relocation table entry corresponding to the name in the assembler source. Next, we parse the expression. */ if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX)) return PARSE_OPERAND_FAIL_NO_BACKTRACK; /* Record the relocation type. */ switch (group_type) { case GROUP_LDR: inst.relocs[0].type = (bfd_reloc_code_real_type) entry->ldr_code; break; case GROUP_LDRS: inst.relocs[0].type = (bfd_reloc_code_real_type) entry->ldrs_code; break; case GROUP_LDC: inst.relocs[0].type = (bfd_reloc_code_real_type) entry->ldc_code; break; default: gas_assert (0); } if (inst.relocs[0].type == 0) { inst.error = _("this group relocation is not allowed on this instruction"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } } else { char *q = p; if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX)) return PARSE_OPERAND_FAIL; /* If the offset is 0, find out if it's a +0 or -0. */ if (inst.relocs[0].exp.X_op == O_constant && inst.relocs[0].exp.X_add_number == 0) { skip_whitespace (q); if (*q == '#') { q++; skip_whitespace (q); } if (*q == '-') inst.operands[i].negative = 1; } } } } else if (skip_past_char (&p, ':') == SUCCESS) { /* FIXME: '@' should be used here, but it's filtered out by generic code before we get to see it here. This may be subject to change. */ parse_operand_result result = parse_neon_alignment (&p, i); if (result != PARSE_OPERAND_SUCCESS) return result; } if (skip_past_char (&p, ']') == FAIL) { inst.error = _("']' expected"); return PARSE_OPERAND_FAIL; } if (skip_past_char (&p, '!') == SUCCESS) inst.operands[i].writeback = 1; else if (skip_past_comma (&p) == SUCCESS) { if (skip_past_char (&p, '{') == SUCCESS) { /* [Rn], {expr} - unindexed, with option */ if (parse_immediate (&p, &inst.operands[i].imm, 0, 255, true) == FAIL) return PARSE_OPERAND_FAIL; if (skip_past_char (&p, '}') == FAIL) { inst.error = _("'}' expected at end of 'option' field"); return PARSE_OPERAND_FAIL; } if (inst.operands[i].preind) { inst.error = _("cannot combine index with option"); return PARSE_OPERAND_FAIL; } *str = p; return PARSE_OPERAND_SUCCESS; } else { inst.operands[i].postind = 1; inst.operands[i].writeback = 1; if (inst.operands[i].preind) { inst.error = _("cannot combine pre- and post-indexing"); return PARSE_OPERAND_FAIL; } if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; enum arm_reg_type rtype = REG_TYPE_MQ; struct neon_type_el et; if (group_type == GROUP_MVE && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL) { inst.operands[i].immisreg = 2; inst.operands[i].imm = reg; } else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { /* We might be using the immediate for alignment already. If we are, OR the register number into the low-order bits. */ if (inst.operands[i].immisalign) inst.operands[i].imm |= reg; else inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return PARSE_OPERAND_FAIL; } else { char *q = p; if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX)) return PARSE_OPERAND_FAIL; /* If the offset is 0, find out if it's a +0 or -0. */ if (inst.relocs[0].exp.X_op == O_constant && inst.relocs[0].exp.X_add_number == 0) { skip_whitespace (q); if (*q == '#') { q++; skip_whitespace (q); } if (*q == '-') inst.operands[i].negative = 1; } } } } /* If at this point neither .preind nor .postind is set, we have a bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */ if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0) { inst.operands[i].preind = 1; inst.relocs[0].exp.X_op = O_constant; inst.relocs[0].exp.X_add_number = 0; } *str = p; return PARSE_OPERAND_SUCCESS; } static int parse_address (char **str, int i) { return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS ? SUCCESS : FAIL; } static parse_operand_result parse_address_group_reloc (char **str, int i, group_reloc_type type) { return parse_address_main (str, i, 1, type); } /* Parse an operand for a MOVW or MOVT instruction. */ static int parse_half (char **str) { char * p; p = *str; skip_past_char (&p, '#'); if (strncasecmp (p, ":lower16:", 9) == 0) inst.relocs[0].type = BFD_RELOC_ARM_MOVW; else if (strncasecmp (p, ":upper16:", 9) == 0) inst.relocs[0].type = BFD_RELOC_ARM_MOVT; if (inst.relocs[0].type != BFD_RELOC_UNUSED) { p += 9; skip_whitespace (p); } if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX)) return FAIL; if (inst.relocs[0].type == BFD_RELOC_UNUSED) { if (inst.relocs[0].exp.X_op != O_constant) { inst.error = _("constant expression expected"); return FAIL; } if (inst.relocs[0].exp.X_add_number < 0 || inst.relocs[0].exp.X_add_number > 0xffff) { inst.error = _("immediate value out of range"); return FAIL; } } *str = p; return SUCCESS; } /* Miscellaneous. */ /* Parse a PSR flag operand. The value returned is FAIL on syntax error, or a bitmask suitable to be or-ed into the ARM msr instruction. */ static int parse_psr (char **str, bool lhs) { char *p; unsigned long psr_field; const struct asm_psr *psr; char *start; bool is_apsr = false; bool m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m); /* PR gas/12698: If the user has specified -march=all then m_profile will be TRUE, but we want to ignore it in this case as we are building for any CPU type, including non-m variants. */ if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any)) m_profile = false; /* CPSR's and SPSR's can now be lowercase. This is just a convenience feature for ease of use and backwards compatibility. */ p = *str; if (strncasecmp (p, "SPSR", 4) == 0) { if (m_profile) goto unsupported_psr; psr_field = SPSR_BIT; } else if (strncasecmp (p, "CPSR", 4) == 0) { if (m_profile) goto unsupported_psr; psr_field = 0; } else if (strncasecmp (p, "APSR", 4) == 0) { /* APSR[_] can be used as a synonym for CPSR[_] on ARMv7-A and ARMv7-R architecture CPUs. */ is_apsr = true; psr_field = 0; } else if (m_profile) { start = p; do p++; while (ISALNUM (*p) || *p == '_'); if (strncasecmp (start, "iapsr", 5) == 0 || strncasecmp (start, "eapsr", 5) == 0 || strncasecmp (start, "xpsr", 4) == 0 || strncasecmp (start, "psr", 3) == 0) p = start + strcspn (start, "rR") + 1; psr = (const struct asm_psr *) str_hash_find_n (arm_v7m_psr_hsh, start, p - start); if (!psr) return FAIL; /* If APSR is being written, a bitfield may be specified. Note that APSR itself is handled above. */ if (psr->field <= 3) { psr_field = psr->field; is_apsr = true; goto check_suffix; } *str = p; /* M-profile MSR instructions have the mask field set to "10", except *PSR variants which modify APSR, which may use a different mask (and have been handled already). Do that by setting the PSR_f field here. */ return psr->field | (lhs ? PSR_f : 0); } else goto unsupported_psr; p += 4; check_suffix: if (*p == '_') { /* A suffix follows. */ p++; start = p; do p++; while (ISALNUM (*p) || *p == '_'); if (is_apsr) { /* APSR uses a notation for bits, rather than fields. */ unsigned int nzcvq_bits = 0; unsigned int g_bit = 0; char *bit; for (bit = start; bit != p; bit++) { switch (TOLOWER (*bit)) { case 'n': nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01; break; case 'z': nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02; break; case 'c': nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04; break; case 'v': nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08; break; case 'q': nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10; break; case 'g': g_bit |= (g_bit & 0x1) ? 0x2 : 0x1; break; default: inst.error = _("unexpected bit specified after APSR"); return FAIL; } } if (nzcvq_bits == 0x1f) psr_field |= PSR_f; if (g_bit == 0x1) { if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)) { inst.error = _("selected processor does not " "support DSP extension"); return FAIL; } psr_field |= PSR_s; } if ((nzcvq_bits & 0x20) != 0 || (nzcvq_bits != 0x1f && nzcvq_bits != 0) || (g_bit & 0x2) != 0) { inst.error = _("bad bitmask specified after APSR"); return FAIL; } } else { psr = (const struct asm_psr *) str_hash_find_n (arm_psr_hsh, start, p - start); if (!psr) goto error; psr_field |= psr->field; } } else { if (ISALNUM (*p)) goto error; /* Garbage after "[CS]PSR". */ /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This is deprecated, but allow it anyway. */ if (is_apsr && lhs) { psr_field |= PSR_f; as_tsktsk (_("writing to APSR without specifying a bitmask is " "deprecated")); } else if (!m_profile) /* These bits are never right for M-profile devices: don't set them (only code paths which read/write APSR reach here). */ psr_field |= (PSR_c | PSR_f); } *str = p; return psr_field; unsupported_psr: inst.error = _("selected processor does not support requested special " "purpose register"); return FAIL; error: inst.error = _("flag for {c}psr instruction expected"); return FAIL; } static int parse_sys_vldr_vstr (char **str) { unsigned i; int val = FAIL; struct { const char *name; int regl; int regh; } sysregs[] = { {"FPSCR", 0x1, 0x0}, {"FPSCR_nzcvqc", 0x2, 0x0}, {"VPR", 0x4, 0x1}, {"P0", 0x5, 0x1}, {"FPCXTNS", 0x6, 0x1}, {"FPCXT_NS", 0x6, 0x1}, {"fpcxtns", 0x6, 0x1}, {"fpcxt_ns", 0x6, 0x1}, {"FPCXTS", 0x7, 0x1}, {"FPCXT_S", 0x7, 0x1}, {"fpcxts", 0x7, 0x1}, {"fpcxt_s", 0x7, 0x1} }; char *op_end = strchr (*str, ','); size_t op_strlen = op_end - *str; for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++) { if (!strncmp (*str, sysregs[i].name, op_strlen)) { val = sysregs[i].regl | (sysregs[i].regh << 3); *str = op_end; break; } } return val; } /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a value suitable for splatting into the AIF field of the instruction. */ static int parse_cps_flags (char **str) { int val = 0; int saw_a_flag = 0; char *s = *str; for (;;) switch (*s++) { case '\0': case ',': goto done; case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break; case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break; case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break; default: inst.error = _("unrecognized CPS flag"); return FAIL; } done: if (saw_a_flag == 0) { inst.error = _("missing CPS flags"); return FAIL; } *str = s - 1; return val; } /* Parse an endian specifier ("BE" or "LE", case insensitive); returns 0 for big-endian, 1 for little-endian, FAIL for an error. */ static int parse_endian_specifier (char **str) { int little_endian; char *s = *str; if (strncasecmp (s, "BE", 2)) little_endian = 0; else if (strncasecmp (s, "LE", 2)) little_endian = 1; else { inst.error = _("valid endian specifiers are be or le"); return FAIL; } if (ISALNUM (s[2]) || s[2] == '_') { inst.error = _("valid endian specifiers are be or le"); return FAIL; } *str = s + 2; return little_endian; } /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a value suitable for poking into the rotate field of an sxt or sxta instruction, or FAIL on error. */ static int parse_ror (char **str) { int rot; char *s = *str; if (strncasecmp (s, "ROR", 3) == 0) s += 3; else { inst.error = _("missing rotation field after comma"); return FAIL; } if (parse_immediate (&s, &rot, 0, 24, false) == FAIL) return FAIL; switch (rot) { case 0: *str = s; return 0x0; case 8: *str = s; return 0x1; case 16: *str = s; return 0x2; case 24: *str = s; return 0x3; default: inst.error = _("rotation can only be 0, 8, 16, or 24"); return FAIL; } } /* Parse a conditional code (from conds[] below). The value returned is in the range 0 .. 14, or FAIL. */ static int parse_cond (char **str) { char *q; const struct asm_cond *c; int n; /* Condition codes are always 2 characters, so matching up to 3 characters is sufficient. */ char cond[3]; q = *str; n = 0; while (ISALPHA (*q) && n < 3) { cond[n] = TOLOWER (*q); q++; n++; } c = (const struct asm_cond *) str_hash_find_n (arm_cond_hsh, cond, n); if (!c) { inst.error = _("condition required"); return FAIL; } *str = q; return c->value; } /* Parse an option for a barrier instruction. Returns the encoding for the option, or FAIL. */ static int parse_barrier (char **str) { char *p, *q; const struct asm_barrier_opt *o; p = q = *str; while (ISALPHA (*q)) q++; o = (const struct asm_barrier_opt *) str_hash_find_n (arm_barrier_opt_hsh, p, q - p); if (!o) return FAIL; if (!mark_feature_used (&o->arch)) return FAIL; *str = q; return o->value; } /* Parse the operands of a table branch instruction. Similar to a memory operand. */ static int parse_tb (char **str) { char * p = *str; int reg; if (skip_past_char (&p, '[') == FAIL) { inst.error = _("'[' expected"); return FAIL; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } inst.operands[0].reg = reg; if (skip_past_comma (&p) == FAIL) { inst.error = _("',' expected"); return FAIL; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } inst.operands[0].imm = reg; if (skip_past_comma (&p) == SUCCESS) { if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL) return FAIL; if (inst.relocs[0].exp.X_add_number != 1) { inst.error = _("invalid shift"); return FAIL; } inst.operands[0].shifted = 1; } if (skip_past_char (&p, ']') == FAIL) { inst.error = _("']' expected"); return FAIL; } *str = p; return SUCCESS; } /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more information on the types the operands can take and how they are encoded. Up to four operands may be read; this function handles setting the ".present" field for each read operand itself. Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS, else returns FAIL. */ static int parse_neon_mov (char **str, int *which_operand) { int i = *which_operand, val; enum arm_reg_type rtype; char *ptr = *str; struct neon_type_el optype; if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL) { /* Cases 17 or 19. */ inst.operands[i].reg = val; inst.operands[i].isvec = 1; inst.operands[i].isscalar = 2; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Case 17: VMOV.
, */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL) { /* Case 19: VMOV , , , */ inst.operands[i].reg = val; inst.operands[i].isvec = 1; inst.operands[i].isscalar = 2; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } else { first_error (_("expected ARM or MVE vector register")); return FAIL; } } else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL) { /* Case 4: VMOV. , . */ inst.operands[i].reg = val; inst.operands[i].isscalar = 1; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype)) != FAIL) || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype)) != FAIL)) { /* Cases 0, 1, 2, 3, 5 (D only). */ if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isquad = (rtype == REG_TYPE_NQ); inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].isvec = 1; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Case 5: VMOV , , . Case 13: VMOV , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; if (rtype == REG_TYPE_NQ) { first_error (_("can't use Neon quad register here")); return FAIL; } else if (rtype != REG_TYPE_VFS) { i++; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } } else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype)) != FAIL) || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype)) != FAIL)) { /* Case 0: VMOV , Case 1: VMOV
, Case 8: VMOV.F32 , Case 15: VMOV , , , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isquad = (rtype == REG_TYPE_NQ); inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].isvec = 1; inst.operands[i].vectype = optype; inst.operands[i].present = 1; if (skip_past_comma (&ptr) == SUCCESS) { /* Case 15. */ i++; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } } else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS) /* Case 2: VMOV.
, # Case 3: VMOV.
, # Case 10: VMOV.F32 , # Case 11: VMOV.F64
, # */ inst.operands[i].immisfloat = 1; else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/false) == SUCCESS) /* Case 2: VMOV.
, # Case 3: VMOV.
, # */ ; else { first_error (_("expected or or operand")); return FAIL; } } else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Cases 6, 7, 16, 18. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL) { /* Case 18: VMOV.
, */ inst.operands[i].reg = val; inst.operands[i].isscalar = 2; inst.operands[i].present = 1; inst.operands[i].vectype = optype; } else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL) { /* Case 6: VMOV.
, */ inst.operands[i].reg = val; inst.operands[i].isscalar = 1; inst.operands[i].present = 1; inst.operands[i].vectype = optype; } else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype)) != FAIL) { /* Case 7: VMOV , , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].vectype = optype; inst.operands[i].present = 1; if (rtype == REG_TYPE_VFS) { /* Case 14. */ i++; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype)) == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_VFS])); return FAIL; } inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = 1; inst.operands[i].vectype = optype; inst.operands[i].present = 1; } } else { if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL) { /* Case 16: VMOV , , , */ inst.operands[i].reg = val; inst.operands[i].isvec = 1; inst.operands[i].isscalar = 2; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_MQ])); return FAIL; } inst.operands[i].reg = val; inst.operands[i].isvec = 1; inst.operands[i].isscalar = 2; inst.operands[i].vectype = optype; inst.operands[i].present = 1; } else { first_error (_("VFP single, double or MVE vector register" " expected")); return FAIL; } } } else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype)) != FAIL) { /* Case 13. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = 1; inst.operands[i].vectype = optype; inst.operands[i].present = 1; } } else { first_error (_("parse error")); return FAIL; } /* Successfully parsed the operands. Update args. */ *which_operand = i; *str = ptr; return SUCCESS; wanted_comma: first_error (_("expected comma")); return FAIL; wanted_arm: first_error (_(reg_expected_msgs[REG_TYPE_RN])); return FAIL; } /* Use this macro when the operand constraints are different for ARM and THUMB (e.g. ldrd). */ #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \ ((arm_operand) | ((thumb_operand) << 16)) /* Matcher codes for parse_operands. */ enum operand_parse_code { OP_stop, /* end of line */ OP_RR, /* ARM register */ OP_RRnpc, /* ARM register, not r15 */ OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */ OP_RRnpcb, /* ARM register, not r15, in square brackets */ OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback, optional trailing ! */ OP_RRw, /* ARM register, not r15, optional trailing ! */ OP_RCP, /* Coprocessor number */ OP_RCN, /* Coprocessor register */ OP_RVS, /* VFP single precision register */ OP_RVD, /* VFP double precision register (0..15) */ OP_RND, /* Neon double precision register (0..31) */ OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */ OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register. */ OP_RNSDMQR, /* Neon single or double precision, MVE vector or ARM register. */ OP_RNQ, /* Neon quad precision register */ OP_RNQMQ, /* Neon quad or MVE vector register. */ OP_RVSD, /* VFP single or double precision register */ OP_RVSD_COND, /* VFP single, double precision register or condition code. */ OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */ OP_RNSD, /* Neon single or double precision register */ OP_RNDQ, /* Neon double or quad precision register */ OP_RNDQMQ, /* Neon double, quad or MVE vector register. */ OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */ OP_RNSDQ, /* Neon single, double or quad precision register */ OP_RNSC, /* Neon scalar D[X] */ OP_RVC, /* VFP control register */ OP_RIWR, /* iWMMXt wR register */ OP_RIWC, /* iWMMXt wC register */ OP_RIWG, /* iWMMXt wCG register */ OP_RXA, /* XScale accumulator register */ OP_RNSDMQ, /* Neon single, double or MVE vector register */ OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register */ OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or GPR (no SP/SP) */ OP_RMQ, /* MVE vector register. */ OP_RMQRZ, /* MVE vector or ARM register including ZR. */ OP_RMQRR, /* MVE vector or ARM register. */ /* New operands for Armv8.1-M Mainline. */ OP_LR, /* ARM LR register */ OP_SP, /* ARM SP register */ OP_R12, OP_RRe, /* ARM register, only even numbered. */ OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */ OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */ OP_RR_ZR, /* ARM register or ZR but no PC */ OP_REGLST, /* ARM register list */ OP_CLRMLST, /* CLRM register list */ OP_VRSLST, /* VFP single-precision register list */ OP_VRDLST, /* VFP double-precision register list */ OP_VRSDLST, /* VFP single or double-precision register list (& quad) */ OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */ OP_NSTRLST, /* Neon element/structure list */ OP_VRSDVLST, /* VFP single or double-precision register list and VPR */ OP_MSTRLST2, /* MVE vector list with two elements. */ OP_MSTRLST4, /* MVE vector list with four elements. */ OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */ OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */ OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */ OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate zero. */ OP_RR_RNSC, /* ARM reg or Neon scalar. */ OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */ OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */ OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register. */ OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon scalar, or ARM register. */ OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */ OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */ OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM register. */ OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */ OP_RND_RNSC, /* Neon D reg, or Neon scalar. */ OP_VMOV, /* Neon VMOV operands. */ OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */ /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */ OP_RNDQMQ_Ibig, OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */ OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or ARM register. */ OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */ OP_VLDR, /* VLDR operand. */ OP_I0, /* immediate zero */ OP_I7, /* immediate value 0 .. 7 */ OP_I15, /* 0 .. 15 */ OP_I16, /* 1 .. 16 */ OP_I16z, /* 0 .. 16 */ OP_I31, /* 0 .. 31 */ OP_I31w, /* 0 .. 31, optional trailing ! */ OP_I32, /* 1 .. 32 */ OP_I32z, /* 0 .. 32 */ OP_I48_I64, /* 48 or 64 */ OP_I63, /* 0 .. 63 */ OP_I63s, /* -64 .. 63 */ OP_I64, /* 1 .. 64 */ OP_I64z, /* 0 .. 64 */ OP_I127, /* 0 .. 127 */ OP_I255, /* 0 .. 255 */ OP_I511, /* 0 .. 511 */ OP_I4095, /* 0 .. 4095 */ OP_I8191, /* 0 .. 8191 */ OP_I4b, /* immediate, prefix optional, 1 .. 4 */ OP_I7b, /* 0 .. 7 */ OP_I15b, /* 0 .. 15 */ OP_I31b, /* 0 .. 31 */ OP_SH, /* shifter operand */ OP_SHG, /* shifter operand with possible group relocation */ OP_ADDR, /* Memory address expression (any mode) */ OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */ OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */ OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */ OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */ OP_EXP, /* arbitrary expression */ OP_EXPi, /* same, with optional immediate prefix */ OP_EXPr, /* same, with optional relocation suffix */ OP_EXPs, /* same, with optional non-first operand relocation suffix */ OP_HALF, /* 0 .. 65535 or low/high reloc. */ OP_IROT1, /* VCADD rotate immediate: 90, 270. */ OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */ OP_CPSF, /* CPS flags */ OP_ENDI, /* Endianness specifier */ OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */ OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */ OP_COND, /* conditional code */ OP_TB, /* Table branch. */ OP_APSR_RR, /* ARM register or "APSR_nzcv". */ OP_RRnpc_I0, /* ARM register or literal 0 */ OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */ OP_RR_EXi, /* ARM register or expression with imm prefix */ OP_RIWR_RIWC, /* iWMMXt R or C reg */ OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */ /* Optional operands. */ OP_oI7b, /* immediate, prefix optional, 0 .. 7 */ OP_oI31b, /* 0 .. 31 */ OP_oI32b, /* 1 .. 32 */ OP_oI32z, /* 0 .. 32 */ OP_oIffffb, /* 0 .. 65535 */ OP_oI255c, /* curly-brace enclosed, 0 .. 255 */ OP_oRR, /* ARM register */ OP_oLR, /* ARM LR register */ OP_oRRnpc, /* ARM register, not the PC */ OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */ OP_oRRw, /* ARM register, not r15, optional trailing ! */ OP_oRND, /* Optional Neon double precision register */ OP_oRNQ, /* Optional Neon quad precision register */ OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */ OP_oRNDQ, /* Optional Neon double or quad precision register */ OP_oRNSDQ, /* Optional single, double or quad precision vector register */ OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector register. */ OP_oRNSDMQ, /* Optional single, double register or MVE vector register. */ OP_oSHll, /* LSL immediate */ OP_oSHar, /* ASR immediate */ OP_oSHllar, /* LSL or ASR immediate */ OP_oROR, /* ROR 0/8/16/24 */ OP_oBARRIER_I15, /* Option argument for a barrier instruction. */ OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */ /* Some pre-defined mixed (ARM/THUMB) operands. */ OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp), OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp), OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp), OP_FIRST_OPTIONAL = OP_oI7b }; /* Generic instruction operand parser. This does no encoding and no semantic validation; it merely squirrels values away in the inst structure. Returns SUCCESS or FAIL depending on whether the specified grammar matched. */ static int parse_operands (char *str, const unsigned int *pattern, bool thumb) { unsigned const int *upat = pattern; char *backtrack_pos = 0; const char *backtrack_error = 0; int i, val = 0, backtrack_index = 0; enum arm_reg_type rtype; parse_operand_result result; unsigned int op_parse_code; bool partial_match; #define po_char_or_fail(chr) \ do \ { \ if (skip_past_char (&str, chr) == FAIL) \ goto bad_args; \ } \ while (0) #define po_reg_or_fail(regtype) \ do \ { \ val = arm_typed_reg_parse (& str, regtype, & rtype, \ & inst.operands[i].vectype); \ if (val == FAIL) \ { \ first_error (_(reg_expected_msgs[regtype])); \ goto failure; \ } \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \ inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \ inst.operands[i].isvec = (rtype == REG_TYPE_VFS \ || rtype == REG_TYPE_VFD \ || rtype == REG_TYPE_NQ); \ inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \ } \ while (0) #define po_reg_or_goto(regtype, label) \ do \ { \ val = arm_typed_reg_parse (& str, regtype, & rtype, \ & inst.operands[i].vectype); \ if (val == FAIL) \ goto label; \ \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \ inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \ inst.operands[i].isvec = (rtype == REG_TYPE_VFS \ || rtype == REG_TYPE_VFD \ || rtype == REG_TYPE_NQ); \ inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \ } \ while (0) #define po_imm_or_fail(min, max, popt) \ do \ { \ if (parse_immediate (&str, &val, min, max, popt) == FAIL) \ goto failure; \ inst.operands[i].imm = val; \ } \ while (0) #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \ do \ { \ expressionS exp; \ my_get_expression (&exp, &str, popt); \ if (exp.X_op != O_constant) \ { \ inst.error = _("constant expression required"); \ goto failure; \ } \ if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \ { \ inst.error = _("immediate value 48 or 64 expected"); \ goto failure; \ } \ inst.operands[i].imm = exp.X_add_number; \ } \ while (0) #define po_scalar_or_goto(elsz, label, reg_type) \ do \ { \ val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \ reg_type); \ if (val == FAIL) \ goto label; \ inst.operands[i].reg = val; \ inst.operands[i].isscalar = 1; \ } \ while (0) #define po_misc_or_fail(expr) \ do \ { \ if (expr) \ goto failure; \ } \ while (0) #define po_misc_or_fail_no_backtrack(expr) \ do \ { \ result = expr; \ if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \ backtrack_pos = 0; \ if (result != PARSE_OPERAND_SUCCESS) \ goto failure; \ } \ while (0) #define po_barrier_or_imm(str) \ do \ { \ val = parse_barrier (&str); \ if (val == FAIL && ! ISALPHA (*str)) \ goto immediate; \ if (val == FAIL \ /* ISB can only take SY as an option. */ \ || ((inst.instruction & 0xf0) == 0x60 \ && val != 0xf)) \ { \ inst.error = _("invalid barrier type"); \ backtrack_pos = 0; \ goto failure; \ } \ } \ while (0) skip_whitespace (str); for (i = 0; upat[i] != OP_stop; i++) { op_parse_code = upat[i]; if (op_parse_code >= 1<<16) op_parse_code = thumb ? (op_parse_code >> 16) : (op_parse_code & ((1<<16)-1)); if (op_parse_code >= OP_FIRST_OPTIONAL) { /* Remember where we are in case we need to backtrack. */ backtrack_pos = str; backtrack_error = inst.error; backtrack_index = i; } if (i > 0 && (i > 1 || inst.operands[0].present)) po_char_or_fail (','); switch (op_parse_code) { /* Registers */ case OP_oRRnpc: case OP_oRRnpcsp: case OP_RRnpc: case OP_RRnpcsp: case OP_oRR: case OP_RRe: case OP_RRo: case OP_LR: case OP_oLR: case OP_SP: case OP_R12: case OP_RR: po_reg_or_fail (REG_TYPE_RN); break; case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break; case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break; case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break; case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break; case OP_oRND: case OP_RNSDMQR: po_reg_or_goto (REG_TYPE_VFS, try_rndmqr); break; try_rndmqr: case OP_RNDMQR: po_reg_or_goto (REG_TYPE_RN, try_rndmq); break; try_rndmq: case OP_RNDMQ: po_reg_or_goto (REG_TYPE_MQ, try_rnd); break; try_rnd: case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break; case OP_RVC: po_reg_or_goto (REG_TYPE_VFC, coproc_reg); break; /* Also accept generic coprocessor regs for unknown registers. */ coproc_reg: po_reg_or_goto (REG_TYPE_CN, vpr_po); break; /* Also accept P0 or p0 for VPR.P0. Since P0 is already an existing register with a value of 0, this seems like the best way to parse P0. */ vpr_po: if (strncasecmp (str, "P0", 2) == 0) { str += 2; inst.operands[i].isreg = 1; inst.operands[i].reg = 13; } else goto failure; break; case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break; case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break; case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break; case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break; case OP_oRNQ: case OP_RNQMQ: po_reg_or_goto (REG_TYPE_MQ, try_nq); break; try_nq: case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break; case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break; case OP_RNDQMQR: po_reg_or_goto (REG_TYPE_RN, try_rndqmq); break; try_rndqmq: case OP_oRNDQMQ: case OP_RNDQMQ: po_reg_or_goto (REG_TYPE_MQ, try_rndq); break; try_rndq: case OP_oRNDQ: case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break; case OP_RVSDMQ: po_reg_or_goto (REG_TYPE_MQ, try_rvsd); break; try_rvsd: case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break; case OP_RVSD_COND: po_reg_or_goto (REG_TYPE_VFSD, try_cond); break; case OP_oRNSDMQ: case OP_RNSDMQ: po_reg_or_goto (REG_TYPE_NSD, try_mq2); break; try_mq2: po_reg_or_fail (REG_TYPE_MQ); break; case OP_oRNSDQ: case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break; case OP_RNSDQMQR: po_reg_or_goto (REG_TYPE_RN, try_mq); break; try_mq: case OP_oRNSDQMQ: case OP_RNSDQMQ: po_reg_or_goto (REG_TYPE_MQ, try_nsdq2); break; try_nsdq2: po_reg_or_fail (REG_TYPE_NSDQ); inst.error = 0; break; case OP_RMQRR: po_reg_or_goto (REG_TYPE_RN, try_rmq); break; try_rmq: case OP_RMQ: po_reg_or_fail (REG_TYPE_MQ); break; /* Neon scalar. Using an element size of 8 means that some invalid scalars are accepted here, so deal with those in later code. */ case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break; case OP_RNDQ_I0: { po_reg_or_goto (REG_TYPE_NDQ, try_imm0); break; try_imm0: po_imm_or_fail (0, 0, true); } break; case OP_RVSD_I0: po_reg_or_goto (REG_TYPE_VFSD, try_imm0); break; case OP_RSVDMQ_FI0: po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0); break; try_rsvd_fi0: case OP_RSVD_FI0: { po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0); break; try_ifimm0: if (parse_ifimm_zero (&str)) inst.operands[i].imm = 0; else { inst.error = _("only floating point zero is allowed as immediate value"); goto failure; } } break; case OP_RR_RNSC: { po_scalar_or_goto (8, try_rr, REG_TYPE_VFD); break; try_rr: po_reg_or_fail (REG_TYPE_RN); } break; case OP_RNSDQ_RNSC_MQ_RR: po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq); break; try_rnsdq_rnsc_mq: case OP_RNSDQ_RNSC_MQ: po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc); break; try_rnsdq_rnsc: case OP_RNSDQ_RNSC: { po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD); inst.error = 0; break; try_nsdq: po_reg_or_fail (REG_TYPE_NSDQ); inst.error = 0; } break; case OP_RNSD_RNSC: { po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD); break; try_s_scalar: po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS); break; try_nsd: po_reg_or_fail (REG_TYPE_NSD); } break; case OP_RNDQMQ_RNSC_RR: po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr); break; try_rndq_rnsc_rr: case OP_RNDQ_RNSC_RR: po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc); break; case OP_RNDQMQ_RNSC: po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc); break; try_rndq_rnsc: case OP_RNDQ_RNSC: { po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD); break; try_ndq: po_reg_or_fail (REG_TYPE_NDQ); } break; case OP_RND_RNSC: { po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD); break; try_vfd: po_reg_or_fail (REG_TYPE_VFD); } break; case OP_VMOV: /* WARNING: parse_neon_mov can move the operand counter, i. If we're not careful then bad things might happen. */ po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL); break; case OP_RNDQMQ_Ibig: po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig); break; try_rndq_ibig: case OP_RNDQ_Ibig: { po_reg_or_goto (REG_TYPE_NDQ, try_immbig); break; try_immbig: /* There's a possibility of getting a 64-bit immediate here, so we need special handling. */ if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/false) == FAIL) { inst.error = _("immediate value is out of range"); goto failure; } } break; case OP_RNDQMQ_I63b_RR: po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr); break; try_rndq_i63b_rr: po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b); break; try_rndq_i63b: case OP_RNDQ_I63b: { po_reg_or_goto (REG_TYPE_NDQ, try_shimm); break; try_shimm: po_imm_or_fail (0, 63, true); } break; case OP_RRnpcb: po_char_or_fail ('['); po_reg_or_fail (REG_TYPE_RN); po_char_or_fail (']'); break; case OP_RRnpctw: case OP_RRw: case OP_oRRw: po_reg_or_fail (REG_TYPE_RN); if (skip_past_char (&str, '!') == SUCCESS) inst.operands[i].writeback = 1; break; /* Immediates */ case OP_I7: po_imm_or_fail ( 0, 7, false); break; case OP_I15: po_imm_or_fail ( 0, 15, false); break; case OP_I16: po_imm_or_fail ( 1, 16, false); break; case OP_I16z: po_imm_or_fail ( 0, 16, false); break; case OP_I31: po_imm_or_fail ( 0, 31, false); break; case OP_I32: po_imm_or_fail ( 1, 32, false); break; case OP_I32z: po_imm_or_fail ( 0, 32, false); break; case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, false); break; case OP_I63s: po_imm_or_fail (-64, 63, false); break; case OP_I63: po_imm_or_fail ( 0, 63, false); break; case OP_I64: po_imm_or_fail ( 1, 64, false); break; case OP_I64z: po_imm_or_fail ( 0, 64, false); break; case OP_I127: po_imm_or_fail ( 0, 127, false); break; case OP_I255: po_imm_or_fail ( 0, 255, false); break; case OP_I511: po_imm_or_fail ( 0, 511, false); break; case OP_I4095: po_imm_or_fail ( 0, 4095, false); break; case OP_I8191: po_imm_or_fail ( 0, 8191, false); break; case OP_I4b: po_imm_or_fail ( 1, 4, true); break; case OP_oI7b: case OP_I7b: po_imm_or_fail ( 0, 7, true); break; case OP_I15b: po_imm_or_fail ( 0, 15, true); break; case OP_oI31b: case OP_I31b: po_imm_or_fail ( 0, 31, true); break; case OP_oI32b: po_imm_or_fail ( 1, 32, true); break; case OP_oI32z: po_imm_or_fail ( 0, 32, true); break; case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, true); break; /* Immediate variants */ case OP_oI255c: po_char_or_fail ('{'); po_imm_or_fail (0, 255, true); po_char_or_fail ('}'); break; case OP_I31w: /* The expression parser chokes on a trailing !, so we have to find it first and zap it. */ { char *s = str; while (*s && *s != ',') s++; if (s[-1] == '!') { s[-1] = '\0'; inst.operands[i].writeback = 1; } po_imm_or_fail (0, 31, true); if (str == s - 1) str = s; } break; /* Expressions */ case OP_EXPi: EXPi: po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str, GE_OPT_PREFIX)); break; case OP_EXP: po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str, GE_NO_PREFIX)); break; case OP_EXPr: EXPr: po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str, GE_NO_PREFIX)); if (inst.relocs[0].exp.X_op == O_symbol) { val = parse_reloc (&str); if (val == -1) { inst.error = _("unrecognized relocation suffix"); goto failure; } else if (val != BFD_RELOC_UNUSED) { inst.operands[i].imm = val; inst.operands[i].hasreloc = 1; } } break; case OP_EXPs: po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str, GE_NO_PREFIX)); if (inst.relocs[i].exp.X_op == O_symbol) { inst.operands[i].hasreloc = 1; } else if (inst.relocs[i].exp.X_op == O_constant) { inst.operands[i].imm = inst.relocs[i].exp.X_add_number; inst.operands[i].hasreloc = 0; } break; /* Operand for MOVW or MOVT. */ case OP_HALF: po_misc_or_fail (parse_half (&str)); break; /* Register or expression. */ case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break; case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break; /* Register or immediate. */ case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break; I0: po_imm_or_fail (0, 0, false); break; case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break; I32: po_imm_or_fail (1, 32, false); break; case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break; I32z: po_imm_or_fail (0, 32, false); break; /* Two kinds of register. */ case OP_RIWR_RIWC: { struct reg_entry *rege = arm_reg_parse_multi (&str); if (!rege || (rege->type != REG_TYPE_MMXWR && rege->type != REG_TYPE_MMXWC && rege->type != REG_TYPE_MMXWCG)) { inst.error = _("iWMMXt data or control register expected"); goto failure; } inst.operands[i].reg = rege->number; inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR); } break; case OP_RIWC_RIWG: { struct reg_entry *rege = arm_reg_parse_multi (&str); if (!rege || (rege->type != REG_TYPE_MMXWC && rege->type != REG_TYPE_MMXWCG)) { inst.error = _("iWMMXt control register expected"); goto failure; } inst.operands[i].reg = rege->number; inst.operands[i].isreg = 1; } break; /* Misc */ case OP_CPSF: val = parse_cps_flags (&str); break; case OP_ENDI: val = parse_endian_specifier (&str); break; case OP_oROR: val = parse_ror (&str); break; try_cond: case OP_COND: val = parse_cond (&str); break; case OP_oBARRIER_I15: po_barrier_or_imm (str); break; immediate: if (parse_immediate (&str, &val, 0, 15, true) == FAIL) goto failure; break; case OP_wPSR: case OP_rPSR: po_reg_or_goto (REG_TYPE_RNB, try_psr); if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt)) { inst.error = _("Banked registers are not available with this " "architecture."); goto failure; } break; try_psr: val = parse_psr (&str, op_parse_code == OP_wPSR); break; case OP_VLDR: po_reg_or_goto (REG_TYPE_VFSD, try_sysreg); break; try_sysreg: val = parse_sys_vldr_vstr (&str); break; case OP_APSR_RR: po_reg_or_goto (REG_TYPE_RN, try_apsr); break; try_apsr: /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS instruction). */ if (strncasecmp (str, "APSR_", 5) == 0) { unsigned found = 0; str += 5; while (found < 15) switch (*str++) { case 'c': found = (found & 1) ? 16 : found | 1; break; case 'n': found = (found & 2) ? 16 : found | 2; break; case 'z': found = (found & 4) ? 16 : found | 4; break; case 'v': found = (found & 8) ? 16 : found | 8; break; default: found = 16; } if (found != 15) goto failure; inst.operands[i].isvec = 1; /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */ inst.operands[i].reg = REG_PC; } else goto failure; break; case OP_TB: po_misc_or_fail (parse_tb (&str)); break; /* Register lists. */ case OP_REGLST: val = parse_reg_list (&str, REGLIST_RN); if (*str == '^') { inst.operands[i].writeback = 1; str++; } break; case OP_CLRMLST: val = parse_reg_list (&str, REGLIST_CLRM); break; case OP_VRSLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S, &partial_match); break; case OP_VRDLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D, &partial_match); break; case OP_VRSDLST: /* Allow Q registers too. */ val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_NEON_D, &partial_match); if (val == FAIL) { inst.error = NULL; val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S, &partial_match); inst.operands[i].issingle = 1; } break; case OP_VRSDVLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D_VPR, &partial_match); if (val == FAIL && !partial_match) { inst.error = NULL; val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S_VPR, &partial_match); inst.operands[i].issingle = 1; } break; case OP_NRDLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_NEON_D, &partial_match); break; case OP_MSTRLST4: case OP_MSTRLST2: val = parse_neon_el_struct_list (&str, &inst.operands[i].reg, 1, &inst.operands[i].vectype); if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe)) goto failure; break; case OP_NSTRLST: val = parse_neon_el_struct_list (&str, &inst.operands[i].reg, 0, &inst.operands[i].vectype); break; /* Addressing modes */ case OP_ADDRMVE: po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE)); break; case OP_ADDR: po_misc_or_fail (parse_address (&str, i)); break; case OP_ADDRGLDR: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDR)); break; case OP_ADDRGLDRS: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDRS)); break; case OP_ADDRGLDC: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDC)); break; case OP_SH: po_misc_or_fail (parse_shifter_operand (&str, i)); break; case OP_SHG: po_misc_or_fail_no_backtrack ( parse_shifter_operand_group_reloc (&str, i)); break; case OP_oSHll: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE)); break; case OP_oSHar: po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE)); break; case OP_oSHllar: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE)); break; case OP_RMQRZ: case OP_oRMQRZ: po_reg_or_goto (REG_TYPE_MQ, try_rr_zr); break; case OP_RR_ZR: try_rr_zr: po_reg_or_goto (REG_TYPE_RN, ZR); break; ZR: po_reg_or_fail (REG_TYPE_ZR); break; default: as_fatal (_("unhandled operand code %d"), op_parse_code); } /* Various value-based sanity checks and shared operations. We do not signal immediate failures for the register constraints; this allows a syntax error to take precedence. */ switch (op_parse_code) { case OP_oRRnpc: case OP_RRnpc: case OP_RRnpcb: case OP_RRw: case OP_oRRw: case OP_RRnpc_I0: if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC) inst.error = BAD_PC; break; case OP_oRRnpcsp: case OP_RRnpcsp: case OP_RRnpcsp_I32: if (inst.operands[i].isreg) { if (inst.operands[i].reg == REG_PC) inst.error = BAD_PC; else if (inst.operands[i].reg == REG_SP /* The restriction on Rd/Rt/Rt2 on Thumb mode has been relaxed since ARMv8-A. */ && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) { gas_assert (thumb); inst.error = BAD_SP; } } break; case OP_RRnpctw: if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC && (inst.operands[i].writeback || thumb)) inst.error = BAD_PC; break; case OP_RVSD_COND: case OP_VLDR: if (inst.operands[i].isreg) break; /* fall through. */ case OP_CPSF: case OP_ENDI: case OP_oROR: case OP_wPSR: case OP_rPSR: case OP_COND: case OP_oBARRIER_I15: case OP_REGLST: case OP_CLRMLST: case OP_VRSLST: case OP_VRDLST: case OP_VRSDLST: case OP_VRSDVLST: case OP_NRDLST: case OP_NSTRLST: case OP_MSTRLST2: case OP_MSTRLST4: if (val == FAIL) goto failure; inst.operands[i].imm = val; break; case OP_LR: case OP_oLR: if (inst.operands[i].reg != REG_LR) inst.error = _("operand must be LR register"); break; case OP_SP: if (inst.operands[i].reg != REG_SP) inst.error = _("operand must be SP register"); break; case OP_R12: if (inst.operands[i].reg != REG_R12) inst.error = _("operand must be r12"); break; case OP_RMQRZ: case OP_oRMQRZ: case OP_RR_ZR: if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC) inst.error = BAD_PC; break; case OP_RRe: if (inst.operands[i].isreg && (inst.operands[i].reg & 0x00000001) != 0) inst.error = BAD_ODD; break; case OP_RRo: if (inst.operands[i].isreg) { if ((inst.operands[i].reg & 0x00000001) != 1) inst.error = BAD_EVEN; else if (inst.operands[i].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[i].reg == REG_PC) inst.error = BAD_PC; } break; default: break; } /* If we get here, this operand was successfully parsed. */ inst.operands[i].present = 1; continue; bad_args: inst.error = BAD_ARGS; failure: if (!backtrack_pos) { /* The parse routine should already have set inst.error, but set a default here just in case. */ if (!inst.error) inst.error = BAD_SYNTAX; return FAIL; } /* Do not backtrack over a trailing optional argument that absorbed some text. We will only fail again, with the 'garbage following instruction' error message, which is probably less helpful than the current one. */ if (backtrack_index == i && backtrack_pos != str && upat[i+1] == OP_stop) { if (!inst.error) inst.error = BAD_SYNTAX; return FAIL; } /* Try again, skipping the optional argument at backtrack_pos. */ str = backtrack_pos; inst.error = backtrack_error; inst.operands[backtrack_index].present = 0; i = backtrack_index; backtrack_pos = 0; } /* Check that we have parsed all the arguments. */ if (*str != '\0' && !inst.error) inst.error = _("garbage following instruction"); return inst.error ? FAIL : SUCCESS; } #undef po_char_or_fail #undef po_reg_or_fail #undef po_reg_or_goto #undef po_imm_or_fail #undef po_scalar_or_fail #undef po_barrier_or_imm /* Shorthand macro for instruction encoding functions issuing errors. */ #define constraint(expr, err) \ do \ { \ if (expr) \ { \ inst.error = err; \ return; \ } \ } \ while (0) /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2 instructions are unpredictable if these registers are used. This is the BadReg predicate in ARM's Thumb-2 documentation. Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few places, while the restriction on REG_SP was relaxed since ARMv8-A. */ #define reject_bad_reg(reg) \ do \ if (reg == REG_PC) \ { \ inst.error = BAD_PC; \ return; \ } \ else if (reg == REG_SP \ && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \ { \ inst.error = BAD_SP; \ return; \ } \ while (0) /* If REG is R13 (the stack pointer), warn that its use is deprecated. */ #define warn_deprecated_sp(reg) \ do \ if (warn_on_deprecated && reg == REG_SP) \ as_tsktsk (_("use of r13 is deprecated")); \ while (0) /* Functions for operand encoding. ARM, then Thumb. */ #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31)) /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding. The only binary encoding difference is the Coprocessor number. Coprocessor 9 is used for half-precision calculations or conversions. The format of the instruction is the same as the equivalent Coprocessor 10 instruction that exists for Single-Precision operation. */ static void do_scalar_fp16_v82_encode (void) { if (inst.cond < COND_ALWAYS) as_warn (_("scalar fp16 instruction cannot be conditional," " the behaviour is UNPREDICTABLE")); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16), _(BAD_FP16)); inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900; mark_feature_used (&arm_ext_fp16); } /* If VAL can be encoded in the immediate field of an ARM instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_arm_immediate (unsigned int val) { unsigned int a, i; if (val <= 0xff) return val; for (i = 2; i < 32; i += 2) if ((a = rotate_left (val, i)) <= 0xff) return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */ return FAIL; } /* If VAL can be encoded in the immediate field of a Thumb32 instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_thumb32_immediate (unsigned int val) { unsigned int a, i; if (val <= 0xff) return val; for (i = 1; i <= 24; i++) { a = val >> i; if ((val & ~(0xffU << i)) == 0) return ((val >> i) & 0x7f) | ((32 - i) << 7); } a = val & 0xff; if (val == ((a << 16) | a)) return 0x100 | a; if (val == ((a << 24) | (a << 16) | (a << 8) | a)) return 0x300 | a; a = val & 0xff00; if (val == ((a << 16) | a)) return 0x200 | (a >> 8); return FAIL; } /* Encode a VFP SP or DP register number into inst.instruction. */ static void encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos) { if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm) && reg > 15) { if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32)) { if (thumb_mode) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, fpu_vfp_ext_d32); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, fpu_vfp_ext_d32); } else { first_error (_("D register out of range for selected VFP version")); return; } } switch (pos) { case VFP_REG_Sd: inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22); break; case VFP_REG_Sn: inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7); break; case VFP_REG_Sm: inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5); break; case VFP_REG_Dd: inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22); break; case VFP_REG_Dn: inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7); break; case VFP_REG_Dm: inst.instruction |= (reg & 15) | ((reg >> 4) << 5); break; default: abort (); } } /* Encode a in an ARM-format instruction. The immediate, if any, is handled by md_apply_fix. */ static void encode_arm_shift (int i) { /* register-shifted register. */ if (inst.operands[i].immisreg) { int op_index; for (op_index = 0; op_index <= i; ++op_index) { /* Check the operand only when it's presented. In pre-UAL syntax, if the destination register is the same as the first operand, two register form of the instruction can be used. */ if (inst.operands[op_index].present && inst.operands[op_index].isreg && inst.operands[op_index].reg == REG_PC) as_warn (UNPRED_REG ("r15")); } if (inst.operands[i].imm == REG_PC) as_warn (UNPRED_REG ("r15")); } if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; if (inst.operands[i].immisreg) { inst.instruction |= SHIFT_BY_REG; inst.instruction |= inst.operands[i].imm << 8; } else inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM; } } static void encode_arm_shifter_operand (int i) { if (inst.operands[i].isreg) { inst.instruction |= inst.operands[i].reg; encode_arm_shift (i); } else { inst.instruction |= INST_IMMEDIATE; if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE) inst.instruction |= inst.operands[i].imm; } } /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */ static void encode_arm_addr_mode_common (int i, bool is_t) { /* PR 14260: Generate an error if the operand is not a register. */ constraint (!inst.operands[i].isreg, _("Instruction does not support =N addresses")); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].preind) { if (is_t) { inst.error = _("instruction does not accept preindexed addressing"); return; } inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) inst.instruction |= WRITE_BACK; } else if (inst.operands[i].postind) { gas_assert (inst.operands[i].writeback); if (is_t) inst.instruction |= WRITE_BACK; } else /* unindexed - only for coprocessor */ { inst.error = _("instruction does not accept unindexed addressing"); return; } if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX)) && (((inst.instruction & 0x000f0000) >> 16) == ((inst.instruction & 0x0000f000) >> 12))) as_warn ((inst.instruction & LOAD_BIT) ? _("destination register same as write-back base") : _("source register same as write-back base")); } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 2 load or store instruction. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_2 (int i, bool is_t) { const bool is_pc = (inst.operands[i].reg == REG_PC); encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { constraint ((inst.operands[i].imm == REG_PC || (is_pc && inst.operands[i].writeback)), BAD_PC_ADDRESSING); inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */ inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; if (inst.operands[i].shifted) { if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM; } } } else /* immediate offset in inst.relocs[0] */ { if (is_pc && !inst.relocs[0].pc_rel) { const bool is_load = ((inst.instruction & LOAD_BIT) != 0); /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt cannot use PC in addressing. PC cannot be used in writeback addressing, either. */ constraint ((is_t || inst.operands[i].writeback), BAD_PC_ADDRESSING); /* Use of PC in str is deprecated for ARMv7. */ if (warn_on_deprecated && !is_load && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7)) as_tsktsk (_("use of PC in this instruction is deprecated")); } if (inst.relocs[0].type == BFD_RELOC_UNUSED) { /* Prefer + for zero encoded value. */ if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM; } } } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 3 load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_3 (int i, bool is_t) { if (inst.operands[i].immisreg && inst.operands[i].shifted) { inst.error = _("instruction does not accept scaled register index"); return; } encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { constraint ((inst.operands[i].imm == REG_PC || (is_t && inst.operands[i].reg == REG_PC)), BAD_PC_ADDRESSING); constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback, BAD_PC_WRITEBACK); inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; } else /* immediate offset in inst.relocs[0] */ { constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel && inst.operands[i].writeback), BAD_PC_WRITEBACK); inst.instruction |= HWOFFSET_IMM; if (inst.relocs[0].type == BFD_RELOC_UNUSED) { /* Prefer + for zero encoded value. */ if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8; } } } /* Write immediate bits [7:0] to the following locations: |28/24|23 19|18 16|15 4|3 0| | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h| This function is used by VMOV/VMVN/VORR/VBIC. */ static void neon_write_immbits (unsigned immbits) { inst.instruction |= immbits & 0xf; inst.instruction |= ((immbits >> 4) & 0x7) << 16; inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24); } /* Invert low-order SIZE bits of XHI:XLO. */ static void neon_invert_size (unsigned *xlo, unsigned *xhi, int size) { unsigned immlo = xlo ? *xlo : 0; unsigned immhi = xhi ? *xhi : 0; switch (size) { case 8: immlo = (~immlo) & 0xff; break; case 16: immlo = (~immlo) & 0xffff; break; case 64: immhi = (~immhi) & 0xffffffff; /* fall through. */ case 32: immlo = (~immlo) & 0xffffffff; break; default: abort (); } if (xlo) *xlo = immlo; if (xhi) *xhi = immhi; } /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits A, B, C, D. */ static int neon_bits_same_in_bytes (unsigned imm) { return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff) && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00) && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000) && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000); } /* For immediate of above form, return 0bABCD. */ static unsigned neon_squash_bits (unsigned imm) { return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14) | ((imm & 0x01000000) >> 21); } /* Compress quarter-float representation to 0b...000 abcdefgh. */ static unsigned neon_qfloat_bits (unsigned imm) { return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80); } /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into the instruction. *OP is passed as the initial value of the op field, and may be set to a different value depending on the constant (i.e. "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not MVN). If the immediate looks like a repeated pattern then also try smaller element sizes. */ static int neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p, unsigned *immbits, int *op, int size, enum neon_el_type type) { /* Only permit float immediates (including 0.0/-0.0) if the operand type is float. */ if (type == NT_float && !float_p) return FAIL; if (type == NT_float && is_quarter_float (immlo) && immhi == 0) { if (size != 32 || *op == 1) return FAIL; *immbits = neon_qfloat_bits (immlo); return 0xf; } if (size == 64) { if (neon_bits_same_in_bytes (immhi) && neon_bits_same_in_bytes (immlo)) { if (*op == 1) return FAIL; *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo); *op = 1; return 0xe; } if (immhi != immlo) return FAIL; } if (size >= 32) { if (immlo == (immlo & 0x000000ff)) { *immbits = immlo; return 0x0; } else if (immlo == (immlo & 0x0000ff00)) { *immbits = immlo >> 8; return 0x2; } else if (immlo == (immlo & 0x00ff0000)) { *immbits = immlo >> 16; return 0x4; } else if (immlo == (immlo & 0xff000000)) { *immbits = immlo >> 24; return 0x6; } else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff)) { *immbits = (immlo >> 8) & 0xff; return 0xc; } else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff)) { *immbits = (immlo >> 16) & 0xff; return 0xd; } if ((immlo & 0xffff) != (immlo >> 16)) return FAIL; immlo &= 0xffff; } if (size >= 16) { if (immlo == (immlo & 0x000000ff)) { *immbits = immlo; return 0x8; } else if (immlo == (immlo & 0x0000ff00)) { *immbits = immlo >> 8; return 0xa; } if ((immlo & 0xff) != (immlo >> 8)) return FAIL; immlo &= 0xff; } if (immlo == (immlo & 0x000000ff)) { /* Don't allow MVN with 8-bit immediate. */ if (*op == 1) return FAIL; *immbits = immlo; return 0xe; } return FAIL; } /* Returns TRUE if double precision value V may be cast to single precision without loss of accuracy. */ static bool is_double_a_single (uint64_t v) { int exp = (v >> 52) & 0x7FF; uint64_t mantissa = v & 0xFFFFFFFFFFFFFULL; return ((exp == 0 || exp == 0x7FF || (exp >= 1023 - 126 && exp <= 1023 + 127)) && (mantissa & 0x1FFFFFFFL) == 0); } /* Returns a double precision value casted to single precision (ignoring the least significant bits in exponent and mantissa). */ static int double_to_single (uint64_t v) { unsigned int sign = (v >> 63) & 1; int exp = (v >> 52) & 0x7FF; uint64_t mantissa = v & 0xFFFFFFFFFFFFFULL; if (exp == 0x7FF) exp = 0xFF; else { exp = exp - 1023 + 127; if (exp >= 0xFF) { /* Infinity. */ exp = 0x7F; mantissa = 0; } else if (exp < 0) { /* No denormalized numbers. */ exp = 0; mantissa = 0; } } mantissa >>= 29; return (sign << 31) | (exp << 23) | mantissa; } enum lit_type { CONST_THUMB, CONST_ARM, CONST_VEC }; static void do_vfp_nsyn_opcode (const char *); /* inst.relocs[0].exp describes an "=expr" load pseudo-operation. Determine whether it can be performed with a move instruction; if it can, convert inst.instruction to that move instruction and return true; if it can't, convert inst.instruction to a literal-pool load and return FALSE. If this is not a valid thing to do in the current context, set inst.error and return TRUE. inst.operands[i] describes the destination register. */ static bool move_or_literal_pool (int i, enum lit_type t, bool mode_3) { unsigned long tbit; bool thumb_p = (t == CONST_THUMB); bool arm_p = (t == CONST_ARM); if (thumb_p) tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT; else tbit = LOAD_BIT; if ((inst.instruction & tbit) == 0) { inst.error = _("invalid pseudo operation"); return true; } if (inst.relocs[0].exp.X_op != O_constant && inst.relocs[0].exp.X_op != O_symbol && inst.relocs[0].exp.X_op != O_big) { inst.error = _("constant expression expected"); return true; } if (inst.relocs[0].exp.X_op == O_constant || inst.relocs[0].exp.X_op == O_big) { uint64_t v; if (inst.relocs[0].exp.X_op == O_big) { LITTLENUM_TYPE *l; if (inst.relocs[0].exp.X_add_number <= 0) /* FP value. */ { /* FIXME: The code that was here previously could not work. Firstly, it tried to convert a floating point number into an extended precision format, but only provided a buffer of 5 littlenums, which was too small. Secondly, it then didn't deal with the value converted correctly, just reading out the first 4 littlenum fields and assuming that could be used directly. I think the code was intended to handle expressions such as: LDR r0, =1.0 VLDR d0, =55.3 but the parsers currently don't permit floating-point literal values to be written this way, so this code is probably unreachable. To be safe, we simply return an error here. */ inst.error = _("constant expression not supported"); return true; } else l = generic_bignum; v = l[3] & LITTLENUM_MASK; v <<= LITTLENUM_NUMBER_OF_BITS; v |= l[2] & LITTLENUM_MASK; v <<= LITTLENUM_NUMBER_OF_BITS; v |= l[1] & LITTLENUM_MASK; v <<= LITTLENUM_NUMBER_OF_BITS; v |= l[0] & LITTLENUM_MASK; } else v = inst.relocs[0].exp.X_add_number; if (!inst.operands[i].issingle) { if (thumb_p) { /* LDR should not use lead in a flag-setting instruction being chosen so we do not check whether movs can be used. */ if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2) || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)) && inst.operands[i].reg != 13 && inst.operands[i].reg != 15) { /* Check if on thumb2 it can be done with a mov.w, mvn or movw instruction. */ unsigned int newimm; bool isNegated = false; newimm = encode_thumb32_immediate (v); if (newimm == (unsigned int) FAIL) { newimm = encode_thumb32_immediate (~v); isNegated = true; } /* The number can be loaded with a mov.w or mvn instruction. */ if (newimm != (unsigned int) FAIL && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)) { inst.instruction = (0xf04f0000 /* MOV.W. */ | (inst.operands[i].reg << 8)); /* Change to MOVN. */ inst.instruction |= (isNegated ? 0x200000 : 0); inst.instruction |= (newimm & 0x800) << 15; inst.instruction |= (newimm & 0x700) << 4; inst.instruction |= (newimm & 0x0ff); return true; } /* The number can be loaded with a movw instruction. */ else if ((v & ~0xFFFF) == 0 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)) { int imm = v & 0xFFFF; inst.instruction = 0xf2400000; /* MOVW. */ inst.instruction |= (inst.operands[i].reg << 8); inst.instruction |= (imm & 0xf000) << 4; inst.instruction |= (imm & 0x0800) << 15; inst.instruction |= (imm & 0x0700) << 4; inst.instruction |= (imm & 0x00ff); /* In case this replacement is being done on Armv8-M Baseline we need to make sure to disable the instruction size check, as otherwise GAS will reject the use of this T32 instruction. */ inst.size_req = 0; return true; } } } else if (arm_p) { int value = encode_arm_immediate (v); if (value != FAIL) { /* This can be done with a mov instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return true; } value = encode_arm_immediate (~ v); if (value != FAIL) { /* This can be done with a mvn instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return true; } } else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)) { int op = 0; unsigned immbits = 0; unsigned immlo = inst.operands[1].imm; unsigned immhi = inst.operands[1].regisimm ? inst.operands[1].reg : inst.relocs[0].exp.X_unsigned ? 0 : (int64_t) (int) immlo >> 32; int cmode = neon_cmode_for_move_imm (immlo, immhi, false, &immbits, &op, 64, NT_invtype); if (cmode == FAIL) { neon_invert_size (&immlo, &immhi, 64); op = !op; cmode = neon_cmode_for_move_imm (immlo, immhi, false, &immbits, &op, 64, NT_invtype); } if (cmode != FAIL) { inst.instruction = (inst.instruction & VLDR_VMOV_SAME) | (1 << 23) | (cmode << 8) | (op << 5) | (1 << 4); /* Fill other bits in vmov encoding for both thumb and arm. */ if (thumb_mode) inst.instruction |= (0x7U << 29) | (0xF << 24); else inst.instruction |= (0xFU << 28) | (0x1 << 25); neon_write_immbits (immbits); return true; } } } if (t == CONST_VEC) { /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */ if (inst.operands[i].issingle && is_quarter_float (inst.operands[1].imm) && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd)) { inst.operands[1].imm = neon_qfloat_bits (v); do_vfp_nsyn_opcode ("fconsts"); return true; } /* If our host does not support a 64-bit type then we cannot perform the following optimization. This mean that there will be a discrepancy between the output produced by an assembler built for a 32-bit-only host and the output produced from a 64-bit host, but this cannot be helped. */ else if (!inst.operands[1].issingle && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3)) { if (is_double_a_single (v) && is_quarter_float (double_to_single (v))) { inst.operands[1].imm = neon_qfloat_bits (double_to_single (v)); do_vfp_nsyn_opcode ("fconstd"); return true; } } } } if (add_to_lit_pool ((!inst.operands[i].isvec || inst.operands[i].issingle) ? 4 : 8) == FAIL) return true; inst.operands[1].reg = REG_PC; inst.operands[1].isreg = 1; inst.operands[1].preind = 1; inst.relocs[0].pc_rel = 1; inst.relocs[0].type = (thumb_p ? BFD_RELOC_ARM_THUMB_OFFSET : (mode_3 ? BFD_RELOC_ARM_HWLITERAL : BFD_RELOC_ARM_LITERAL)); return false; } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format instruction. Reject all forms which cannot be encoded into a coprocessor load/store instruction. If wb_ok is false, reject use of writeback; if unind_ok is false, reject use of unindexed addressing. If reloc_override is not 0, use it instead of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one (in which case it is preserved). */ static int encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override) { if (!inst.operands[i].isreg) { /* PR 18256 */ if (! inst.operands[0].isvec) { inst.error = _("invalid co-processor operand"); return FAIL; } if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/false)) return SUCCESS; } inst.instruction |= inst.operands[i].reg << 16; gas_assert (!(inst.operands[i].preind && inst.operands[i].postind)); if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */ { gas_assert (!inst.operands[i].writeback); if (!unind_ok) { inst.error = _("instruction does not support unindexed addressing"); return FAIL; } inst.instruction |= inst.operands[i].imm; inst.instruction |= INDEX_UP; return SUCCESS; } if (inst.operands[i].preind) inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) { if (inst.operands[i].reg == REG_PC) { inst.error = _("pc may not be used with write-back"); return FAIL; } if (!wb_ok) { inst.error = _("instruction does not support writeback"); return FAIL; } inst.instruction |= WRITE_BACK; } if (reloc_override) inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override; else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2) && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0) { if (thumb_mode) inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM; else inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM; } /* Prefer + for zero encoded value. */ if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; return SUCCESS; } /* Functions for instruction encoding, sorted by sub-architecture. First some generics; their names are taken from the conventional bit positions for register arguments in ARM format instructions. */ static void do_noargs (void) { } static void do_rd (void) { inst.instruction |= inst.operands[0].reg << 12; } static void do_rn (void) { inst.instruction |= inst.operands[0].reg << 16; } static void do_rd_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; } static void do_rm_rn (void) { inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 16; } static void do_rd_rn (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } static void do_rn_rd (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; } static void do_tt (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } static bool check_obsolete (const arm_feature_set *feature, const char *msg) { if (ARM_CPU_IS_ANY (cpu_variant)) { as_tsktsk ("%s", msg); return true; } else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature)) { as_bad ("%s", msg); return true; } return false; } static void do_rd_rm_rn (void) { unsigned Rn = inst.operands[2].reg; /* Enforce restrictions on SWP instruction. */ if ((inst.instruction & 0x0fbfffff) == 0x01000090) { constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg, _("Rn must not overlap other operands")); /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7. */ if (!check_obsolete (&arm_ext_v8, _("swp{b} use is obsoleted for ARMv8 and later")) && warn_on_deprecated && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6)) as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7")); } inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= Rn << 16; } static void do_rd_rn_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_rm_rd_rn (void) { constraint ((inst.operands[2].reg == REG_PC), BAD_PC); constraint (((inst.relocs[0].exp.X_op != O_constant && inst.relocs[0].exp.X_op != O_illegal) || inst.relocs[0].exp.X_add_number != 0), BAD_ADDR_MODE); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_imm0 (void) { inst.instruction |= inst.operands[0].imm; } /* ARM instructions, in alphabetical order by function name (except that wrapper functions appear immediately after the function they wrap). */ /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8". */ static void do_adr (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE; inst.relocs[0].pc_rel = 1; inst.relocs[0].exp.X_add_number -= 8; if (support_interwork && inst.relocs[0].exp.X_op == O_symbol && inst.relocs[0].exp.X_add_symbol != NULL && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol) && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol)) inst.relocs[0].exp.X_add_number |= 1; } /* This is a pseudo-op of the form "adrl rd, label" to be converted into a relative address of the form: add rd, pc, #low(label-.-8)" add rd, rd, #high(label-.-8)" */ static void do_adrl (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE; inst.relocs[0].pc_rel = 1; inst.size = INSN_SIZE * 2; inst.relocs[0].exp.X_add_number -= 8; if (support_interwork && inst.relocs[0].exp.X_op == O_symbol && inst.relocs[0].exp.X_add_symbol != NULL && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol) && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol)) inst.relocs[0].exp.X_add_number |= 1; } static void do_arit (void) { constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC , THUMB1_RELOC_ONLY); if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_shifter_operand (2); } static void do_barrier (void) { if (inst.operands[0].present) inst.instruction |= inst.operands[0].imm; else inst.instruction |= 0xf; } static void do_bfc (void) { unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfi (void) { unsigned int msb; /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) inst.operands[1].reg = REG_PC; msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfx (void) { constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (inst.operands[3].imm - 1) << 16; } /* ARM V5 breakpoint instruction (argument parse) BKPT <16 bit unsigned immediate> Instruction is not conditional. The bit pattern given in insns[] has the COND_ALWAYS condition, and it is an error if the caller tried to override that. */ static void do_bkpt (void) { /* Top 12 of 16 bits to bits 19:8. */ inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4; /* Bottom 4 of 16 bits to bits 3:0. */ inst.instruction |= inst.operands[0].imm & 0xf; } static void encode_branch (int default_reloc) { if (inst.operands[0].hasreloc) { constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL, _("the only valid suffixes here are '(plt)' and '(tlscall)'")); inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32 ? BFD_RELOC_ARM_PLT32 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL; } else inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc; inst.relocs[0].pc_rel = 1; } static void do_branch (void) { #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) encode_branch (BFD_RELOC_ARM_PCREL_JUMP); else #endif encode_branch (BFD_RELOC_ARM_PCREL_BRANCH); } static void do_bl (void) { #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) { if (inst.cond == COND_ALWAYS) encode_branch (BFD_RELOC_ARM_PCREL_CALL); else encode_branch (BFD_RELOC_ARM_PCREL_JUMP); } else #endif encode_branch (BFD_RELOC_ARM_PCREL_BRANCH); } /* ARM V5 branch-link-exchange instruction (argument parse) BLX ie BLX(1) BLX{} ie BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. Also, the can be 25 bits, hence has its own reloc. */ static void do_blx (void) { if (inst.operands[0].isreg) { /* Arg is a register; the opcode provided by insns[] is correct. It is not illegal to do "blx pc", just useless. */ if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in blx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; } else { /* Arg is an address; this instruction cannot be executed conditionally, and the opcode must be adjusted. We retain the BFD_RELOC_ARM_PCREL_BLX till the very end where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */ constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction = 0xfa000000; encode_branch (BFD_RELOC_ARM_PCREL_BLX); } } static void do_bx (void) { bool want_reloc; if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; /* Output R_ARM_V4BX relocations if is an EABI object that looks like it is for ARMv4t or earlier. */ want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5); if (!ARM_FEATURE_ZERO (selected_object_arch) && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5)) want_reloc = true; #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4) #endif want_reloc = false; if (want_reloc) inst.relocs[0].type = BFD_RELOC_ARM_V4BX; } /* ARM v5TEJ. Jump to Jazelle code. */ static void do_bxj (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bxj is not really useful")); inst.instruction |= inst.operands[0].reg; } /* Co-processor data operation: CDP{cond} , , , , {, } CDP2 , , , , {, } */ static void do_cdp (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 20; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } static void do_cmp (void) { inst.instruction |= inst.operands[0].reg << 16; encode_arm_shifter_operand (1); } /* Transfer between coprocessor and ARM registers. MRC{cond} , , , , {, } MRC2 MCR{cond} MCR2 No special properties. */ struct deprecated_coproc_regs_s { unsigned cp; int opc1; unsigned crn; unsigned crm; int opc2; arm_feature_set deprecated; arm_feature_set obsoleted; const char *dep_msg; const char *obs_msg; }; #define DEPR_ACCESS_V8 \ N_("This coprocessor register access is deprecated in ARMv8") /* Table of all deprecated coprocessor registers. */ static struct deprecated_coproc_regs_s deprecated_coproc_regs[] = { {15, 0, 7, 10, 5, /* CP15DMB. */ ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE, DEPR_ACCESS_V8, NULL}, {15, 0, 7, 10, 4, /* CP15DSB. */ ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE, DEPR_ACCESS_V8, NULL}, {15, 0, 7, 5, 4, /* CP15ISB. */ ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE, DEPR_ACCESS_V8, NULL}, {14, 6, 1, 0, 0, /* TEEHBR. */ ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE, DEPR_ACCESS_V8, NULL}, {14, 6, 0, 0, 0, /* TEECR. */ ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE, DEPR_ACCESS_V8, NULL}, }; #undef DEPR_ACCESS_V8 static const size_t deprecated_coproc_reg_count = sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]); static void do_co_reg (void) { unsigned Rd; size_t i; Rd = inst.operands[2].reg; if (thumb_mode) { if (inst.instruction == 0xee000010 || inst.instruction == 0xfe000010) /* MCR, MCR2 */ reject_bad_reg (Rd); else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) /* MRC, MRC2 */ constraint (Rd == REG_SP, BAD_SP); } else { /* MCR */ if (inst.instruction == 0xe000010) constraint (Rd == REG_PC, BAD_PC); } for (i = 0; i < deprecated_coproc_reg_count; ++i) { const struct deprecated_coproc_regs_s *r = deprecated_coproc_regs + i; if (inst.operands[0].reg == r->cp && inst.operands[1].imm == r->opc1 && inst.operands[3].reg == r->crn && inst.operands[4].reg == r->crm && inst.operands[5].imm == r->opc2) { if (! ARM_CPU_IS_ANY (cpu_variant) && warn_on_deprecated && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated)) as_tsktsk ("%s", r->dep_msg); } } inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 21; inst.instruction |= Rd << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } /* Transfer between coprocessor register and pair of ARM registers. MCRR{cond} , , , , . MCRR2 MRRC{cond} MRRC2 Two XScale instructions are special cases of these: MAR{cond} acc0, , == MCRR{cond} p0, #0, , , c0 MRA{cond} acc0, , == MRRC{cond} p0, #0, , , c0 Result unpredictable if Rd or Rn is R15. */ static void do_co_reg2c (void) { unsigned Rd, Rn; Rd = inst.operands[2].reg; Rn = inst.operands[3].reg; if (thumb_mode) { reject_bad_reg (Rd); reject_bad_reg (Rn); } else { constraint (Rd == REG_PC, BAD_PC); constraint (Rn == REG_PC, BAD_PC); } /* Only check the MRRC{2} variants. */ if ((inst.instruction & 0x0FF00000) == 0x0C500000) { /* If Rd == Rn, error that the operation is unpredictable (example MRRC p3,#1,r1,r1,c4). */ constraint (Rd == Rn, BAD_OVERLAP); } inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 4; inst.instruction |= Rd << 12; inst.instruction |= Rn << 16; inst.instruction |= inst.operands[4].reg; } static void do_cpsi (void) { inst.instruction |= inst.operands[0].imm << 6; if (inst.operands[1].present) { inst.instruction |= CPSI_MMOD; inst.instruction |= inst.operands[1].imm; } } static void do_dbg (void) { inst.instruction |= inst.operands[0].imm; } static void do_div (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rn = (inst.operands[1].present ? inst.operands[1].reg : Rd); Rm = inst.operands[2].reg; constraint ((Rd == REG_PC), BAD_PC); constraint ((Rn == REG_PC), BAD_PC); constraint ((Rm == REG_PC), BAD_PC); inst.instruction |= Rd << 16; inst.instruction |= Rn << 0; inst.instruction |= Rm << 8; } static void do_it (void) { /* There is no IT instruction in ARM mode. We process it to do the validation as if in thumb mode, just in case the code gets assembled for thumb using the unified syntax. */ inst.size = 0; if (unified_syntax) { set_pred_insn_type (IT_INSN); now_pred.mask = (inst.instruction & 0xf) | 0x10; now_pred.cc = inst.operands[0].imm; } } /* If there is only one register in the register list, then return its register number. Otherwise return -1. */ static int only_one_reg_in_list (int range) { int i = ffs (range) - 1; return (i > 15 || range != (1 << i)) ? -1 : i; } static void encode_ldmstm(int from_push_pop_mnem) { int base_reg = inst.operands[0].reg; int range = inst.operands[1].imm; int one_reg; inst.instruction |= base_reg << 16; inst.instruction |= range; if (inst.operands[1].writeback) inst.instruction |= LDM_TYPE_2_OR_3; if (inst.operands[0].writeback) { inst.instruction |= WRITE_BACK; /* Check for unpredictable uses of writeback. */ if (inst.instruction & LOAD_BIT) { /* Not allowed in LDM type 2. */ if ((inst.instruction & LDM_TYPE_2_OR_3) && ((range & (1 << REG_PC)) == 0)) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list for other types. */ else if (range & (1 << base_reg)) as_warn (_("writeback of base register when in register list is UNPREDICTABLE")); } else /* STM. */ { /* Not allowed for type 2. */ if (inst.instruction & LDM_TYPE_2_OR_3) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list, or first in list. */ else if ((range & (1 << base_reg)) && (range & ((1 << base_reg) - 1))) as_warn (_("if writeback register is in list, it must be the lowest reg in the list")); } } /* If PUSH/POP has only one register, then use the A2 encoding. */ one_reg = only_one_reg_in_list (range); if (from_push_pop_mnem && one_reg >= 0) { int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH; if (is_push && one_reg == 13 /* SP */) /* PR 22483: The A2 encoding cannot be used when pushing the stack pointer as this is UNPREDICTABLE. */ return; inst.instruction &= A_COND_MASK; inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP; inst.instruction |= one_reg << 12; } } static void do_ldmstm (void) { encode_ldmstm (/*from_push_pop_mnem=*/false); } /* ARMv5TE load-consecutive (argument parse) Mode is like LDRH. LDRccD R, mode STRccD R, mode. */ static void do_ldrd (void) { constraint (inst.operands[0].reg % 2 != 0, _("first transfer register must be even")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only transfer two consecutive registers")); constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); constraint (!inst.operands[2].isreg, _("'[' expected")); if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg + 1; /* encode_arm_addr_mode_3 will diagnose overlap between the base register and the first register written; we have to diagnose overlap between the base and the second register written here. */ if (inst.operands[2].reg == inst.operands[1].reg && (inst.operands[2].writeback || inst.operands[2].postind)) as_warn (_("base register written back, and overlaps " "second transfer register")); if (!(inst.instruction & V4_STR_BIT)) { /* For an index-register load, the index register must not overlap the destination (even if not write-back). */ if (inst.operands[2].immisreg && ((unsigned) inst.operands[2].imm == inst.operands[0].reg || (unsigned) inst.operands[2].imm == inst.operands[1].reg)) as_warn (_("index register overlaps transfer register")); } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (2, /*is_t=*/false); } static void do_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative /* This can arise if the programmer has written strex rN, rM, foo or if they have mistakenly used a register name as the last operand, eg: strex rN, rM, rX It is very difficult to distinguish between these two cases because "rX" might actually be a label. ie the register name has been occluded by a symbol of the same name. So we just generate a general 'bad addressing mode' type error message and leave it up to the programmer to discover the true cause and fix their mistake. */ || (inst.operands[1].reg == REG_PC), BAD_ADDR_MODE); constraint (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0, _("offset must be zero in ARM encoding")); constraint ((inst.operands[1].reg == REG_PC), BAD_PC); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.relocs[0].type = BFD_RELOC_UNUSED; } static void do_ldrexd (void) { constraint (inst.operands[0].reg % 2 != 0, _("even register required")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only load two consecutive registers")); /* If op 1 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } /* In both ARM and thumb state 'ldr pc, #imm' with an immediate which is not a multiple of four is UNPREDICTABLE. */ static void check_ldr_r15_aligned (void) { constraint (!(inst.operands[1].immisreg) && (inst.operands[0].reg == REG_PC && inst.operands[1].reg == REG_PC && (inst.relocs[0].exp.X_add_number & 0x3)), _("ldr to register 15 must be 4-byte aligned")); } static void do_ldst (void) { inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/false)) return; encode_arm_addr_mode_2 (1, /*is_t=*/false); check_ldr_r15_aligned (); } static void do_ldstt (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_2 (1, /*is_t=*/true); } /* Halfword and signed-byte load/store operations. */ static void do_ldstv4 (void) { constraint (inst.operands[0].reg == REG_PC, BAD_PC); inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/true)) return; encode_arm_addr_mode_3 (1, /*is_t=*/false); } static void do_ldsttv4 (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (1, /*is_t=*/true); } /* Co-processor register load/store. Format: {cond}[L] CP#,CRd,
*/ static void do_lstc (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; encode_arm_cp_address (2, true, true, 0); } static void do_mlas (void) { /* This restriction does not apply to mls (nor to mla in v6 or later). */ if (inst.operands[0].reg == inst.operands[1].reg && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6) && !(inst.instruction & 0x00400000)) as_tsktsk (_("Rd and Rm should be different in mla")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } static void do_mov (void) { constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC , THUMB1_RELOC_ONLY); inst.instruction |= inst.operands[0].reg << 12; encode_arm_shifter_operand (1); } /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #. */ static void do_mov16 (void) { bfd_vma imm; bool top; top = (inst.instruction & 0x00400000) != 0; constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW, _(":lower16: not allowed in this instruction")); constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT, _(":upper16: not allowed in this instruction")); inst.instruction |= inst.operands[0].reg << 12; if (inst.relocs[0].type == BFD_RELOC_UNUSED) { imm = inst.relocs[0].exp.X_add_number; /* The value is in two pieces: 0:11, 16:19. */ inst.instruction |= (imm & 0x00000fff); inst.instruction |= (imm & 0x0000f000) << 4; } } static int do_vfp_nsyn_mrs (void) { if (inst.operands[0].isvec) { if (inst.operands[1].reg != 1) first_error (_("operand 1 must be FPSCR")); memset (&inst.operands[0], '\0', sizeof (inst.operands[0])); memset (&inst.operands[1], '\0', sizeof (inst.operands[1])); do_vfp_nsyn_opcode ("fmstat"); } else if (inst.operands[1].isvec) do_vfp_nsyn_opcode ("fmrx"); else return FAIL; return SUCCESS; } static int do_vfp_nsyn_msr (void) { if (inst.operands[0].isvec) do_vfp_nsyn_opcode ("fmxr"); else return FAIL; return SUCCESS; } static void do_vmrs (void) { unsigned Rt = inst.operands[0].reg; if (thumb_mode && Rt == REG_SP) { inst.error = BAD_SP; return; } switch (inst.operands[1].reg) { /* MVFR2 is only valid for Armv8-A. */ case 5: constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); break; /* Check for new Armv8.1-M Mainline changes to . */ case 1: /* fpscr. */ constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)), _(BAD_FPU)); break; case 14: /* fpcxt_ns, fpcxtns, FPCXT_NS, FPCXTNS. */ case 15: /* fpcxt_s, fpcxts, FPCXT_S, FPCXTS. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main), _("selected processor does not support instruction")); break; case 2: /* fpscr_nzcvqc. */ case 12: /* vpr. */ case 13: /* p0. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main) || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)), _("selected processor does not support instruction")); if (inst.operands[0].reg != 2 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE")); break; default: break; } /* APSR_ sets isvec. All other refs to PC are illegal. */ if (!inst.operands[0].isvec && Rt == REG_PC) { inst.error = BAD_PC; return; } /* If we get through parsing the register name, we just insert the number generated into the instruction without further validation. */ inst.instruction |= (inst.operands[1].reg << 16); inst.instruction |= (Rt << 12); } static void do_vmsr (void) { unsigned Rt = inst.operands[1].reg; if (thumb_mode) reject_bad_reg (Rt); else if (Rt == REG_PC) { inst.error = BAD_PC; return; } switch (inst.operands[0].reg) { /* MVFR2 is only valid for Armv8-A. */ case 5: constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); break; /* Check for new Armv8.1-M Mainline changes to . */ case 1: /* fpcr. */ constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)), _(BAD_FPU)); break; case 14: /* fpcxt_ns. */ case 15: /* fpcxt_s. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main), _("selected processor does not support instruction")); break; case 2: /* fpscr_nzcvqc. */ case 12: /* vpr. */ case 13: /* p0. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main) || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)), _("selected processor does not support instruction")); if (inst.operands[0].reg != 2 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE")); break; default: break; } /* If we get through parsing the register name, we just insert the number generated into the instruction without further validation. */ inst.instruction |= (inst.operands[0].reg << 16); inst.instruction |= (Rt << 12); } static void do_mrs (void) { unsigned br; if (do_vfp_nsyn_mrs () == SUCCESS) return; constraint (inst.operands[0].reg == REG_PC, BAD_PC); inst.instruction |= inst.operands[0].reg << 12; if (inst.operands[1].isreg) { br = inst.operands[1].reg; if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000)) as_bad (_("bad register for mrs")); } else { /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */ constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f)) != (PSR_c|PSR_f), _("'APSR', 'CPSR' or 'SPSR' expected")); br = (15<<16) | (inst.operands[1].imm & SPSR_BIT); } inst.instruction |= br; } /* Two possible forms: "{C|S}PSR_, Rm", "{C|S}PSR_f, #expression". */ static void do_msr (void) { if (do_vfp_nsyn_msr () == SUCCESS) return; inst.instruction |= inst.operands[0].imm; if (inst.operands[1].isreg) inst.instruction |= inst.operands[1].reg; else { inst.instruction |= INST_IMMEDIATE; inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE; inst.relocs[0].pc_rel = 0; } } static void do_mul (void) { constraint (inst.operands[2].reg == REG_PC, BAD_PC); if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)) as_tsktsk (_("Rd and Rm should be different in mul")); } /* Long Multiply Parser UMULL RdLo, RdHi, Rm, Rs SMULL RdLo, RdHi, Rm, Rs UMLAL RdLo, RdHi, Rm, Rs SMLAL RdLo, RdHi, Rm, Rs. */ static void do_mull (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; /* rdhi and rdlo must be different. */ if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); /* rdhi, rdlo and rm must all be different before armv6. */ if ((inst.operands[0].reg == inst.operands[2].reg || inst.operands[1].reg == inst.operands[2].reg) && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)) as_tsktsk (_("rdhi, rdlo and rm must all be different")); } static void do_nop (void) { if (inst.operands[0].present || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k)) { /* Architectural NOP hints are CPSR sets with no bits selected. */ inst.instruction &= 0xf0000000; inst.instruction |= 0x0320f000; if (inst.operands[0].present) inst.instruction |= inst.operands[0].imm; } } /* ARM V6 Pack Halfword Bottom Top instruction (argument parse). PKHBT {} , , {, LSL #} Condition defaults to COND_ALWAYS. Error if Rd, Rn or Rm are R15. */ static void do_pkhbt (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 PKHTB (Argument Parse). */ static void do_pkhtb (void) { if (!inst.operands[3].present) { /* If the shift specifier is omitted, turn the instruction into pkhbt rd, rm, rn. */ inst.instruction &= 0xfff00010; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; } else { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; encode_arm_shift (3); } } /* ARMv5TE: Preload-Cache MP Extensions: Preload for write PLD(W) Syntactically, like LDR with B=1, W=0, L=1. */ static void do_pld (void) { constraint (!inst.operands[0].isreg, _("'[' expected after PLD mnemonic")); constraint (inst.operands[0].postind, _("post-indexed expression used in preload instruction")); constraint (inst.operands[0].writeback, _("writeback used in preload instruction")); constraint (!inst.operands[0].preind, _("unindexed addressing used in preload instruction")); encode_arm_addr_mode_2 (0, /*is_t=*/false); } /* ARMv7: PLI */ static void do_pli (void) { constraint (!inst.operands[0].isreg, _("'[' expected after PLI mnemonic")); constraint (inst.operands[0].postind, _("post-indexed expression used in preload instruction")); constraint (inst.operands[0].writeback, _("writeback used in preload instruction")); constraint (!inst.operands[0].preind, _("unindexed addressing used in preload instruction")); encode_arm_addr_mode_2 (0, /*is_t=*/false); inst.instruction &= ~PRE_INDEX; } static void do_push_pop (void) { constraint (inst.operands[0].writeback, _("push/pop do not support {reglist}^")); inst.operands[1] = inst.operands[0]; memset (&inst.operands[0], 0, sizeof inst.operands[0]); inst.operands[0].isreg = 1; inst.operands[0].writeback = 1; inst.operands[0].reg = REG_SP; encode_ldmstm (/*from_push_pop_mnem=*/true); } /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the word at the specified address and the following word respectively. Unconditionally executed. Error if Rn is R15. */ static void do_rfe (void) { inst.instruction |= inst.operands[0].reg << 16; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 ssat (argument parse). */ static void do_ssat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (inst.operands[1].imm - 1) << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 usat (argument parse). */ static void do_usat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 ssat16 (argument parse). */ static void do_ssat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= ((inst.operands[1].imm - 1) << 16); inst.instruction |= inst.operands[2].reg; } static void do_usat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; } /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while preserving the other bits. setend , where is either BE or LE. */ static void do_setend (void) { if (warn_on_deprecated && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) as_tsktsk (_("setend use is deprecated for ARMv8")); if (inst.operands[0].imm) inst.instruction |= 0x200; } static void do_shift (void) { unsigned int Rm = (inst.operands[1].present ? inst.operands[1].reg : inst.operands[0].reg); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= Rm; if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */ { inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= SHIFT_BY_REG; /* PR 12854: Error on extraneous shifts. */ constraint (inst.operands[2].shifted, _("extraneous shift as part of operand to shift insn")); } else inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM; } static void do_smc (void) { unsigned int value = inst.relocs[0].exp.X_add_number; constraint (value > 0xf, _("immediate too large (bigger than 0xF)")); inst.relocs[0].type = BFD_RELOC_ARM_SMC; inst.relocs[0].pc_rel = 0; } static void do_hvc (void) { inst.relocs[0].type = BFD_RELOC_ARM_HVC; inst.relocs[0].pc_rel = 0; } static void do_swi (void) { inst.relocs[0].type = BFD_RELOC_ARM_SWI; inst.relocs[0].pc_rel = 0; } static void do_setpan (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan), _("selected processor does not support SETPAN instruction")); inst.instruction |= ((inst.operands[0].imm & 1) << 9); } static void do_t_setpan (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan), _("selected processor does not support SETPAN instruction")); inst.instruction |= (inst.operands[0].imm << 3); } /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse) SMLAxy{cond} Rd,Rm,Rs,Rn SMLAWy{cond} Rd,Rm,Rs,Rn Error if any register is R15. */ static void do_smla (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse) SMLALxy{cond} Rdlo,Rdhi,Rm,Rs Error if any register is R15. Warning if Rdlo == Rdhi. */ static void do_smlal (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); } /* ARM V5E (El Segundo) signed-multiply (argument parse) SMULxy{cond} Rd,Rm,Rs Error if any register is R15. */ static void do_smul (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; } /* ARM V6 srs (argument parse). The variable fields in the encoding are the same for both ARM and Thumb-2. */ static void do_srs (void) { int reg; if (inst.operands[0].present) { reg = inst.operands[0].reg; constraint (reg != REG_SP, _("SRS base register must be r13")); } else reg = REG_SP; inst.instruction |= reg << 16; inst.instruction |= inst.operands[1].imm; if (inst.operands[0].writeback || inst.operands[1].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 strex (argument parse). */ static void do_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative /* See comment in do_ldrex(). */ || (inst.operands[2].reg == REG_PC), BAD_ADDR_MODE); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); constraint (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0, _("offset must be zero in ARM encoding")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; inst.relocs[0].type = BFD_RELOC_UNUSED; } static void do_t_strexbh (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative, BAD_ADDR_MODE); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); do_rm_rd_rn (); } static void do_strexd (void) { constraint (inst.operands[1].reg % 2 != 0, _("even register required")); constraint (inst.operands[2].present && inst.operands[2].reg != inst.operands[1].reg + 1, _("can only store two consecutive registers")); /* If op 2 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here")); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[1].reg + 1 || inst.operands[0].reg == inst.operands[3].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[3].reg << 16; } /* ARM V8 STRL. */ static void do_stlex (void) { constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); do_rd_rm_rn (); } static void do_t_stlex (void) { constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); do_rm_rd_rn (); } /* ARM V6 SXTAH extracts a 16-bit value from a register, sign extends it to 32-bits, and adds the result to a value in another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value. SXTAH{} , , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxtah (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 10; } /* ARM V6 SXTH. SXTH {} , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxth (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 10; } /* VFP instructions. In a logical order: SP variant first, monad before dyad, arithmetic then move then load/store. */ static void do_vfp_sp_monadic (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dyadic (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_compare_z (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); } static void do_vfp_dp_sp_cvt (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dp_cvt (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm); } static void do_vfp_reg_from_sp (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); inst.instruction |= inst.operands[0].reg << 12; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn); } static void do_vfp_reg2_from_sp2 (void) { constraint (inst.operands[2].imm != 2, _("only two consecutive VFP SP registers allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_from_reg (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn); inst.instruction |= inst.operands[1].reg << 12; } static void do_vfp_sp2_from_reg2 (void) { constraint (inst.operands[0].imm != 2, _("only two consecutive VFP SP registers allowed here")); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm); inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_vfp_sp_ldst (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_cp_address (1, false, true, 0); } static void do_vfp_dp_ldst (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_cp_address (1, false, true, 0); } static void vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type) { if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd); inst.instruction |= inst.operands[1].imm; } static void vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type) { int count; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); count = inst.operands[1].imm << 1; if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX) count += 1; inst.instruction |= count; } static void do_vfp_sp_ldstmia (void) { vfp_sp_ldstm (VFP_LDSTMIA); } static void do_vfp_sp_ldstmdb (void) { vfp_sp_ldstm (VFP_LDSTMDB); } static void do_vfp_dp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIA); } static void do_vfp_dp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDB); } static void do_vfp_xp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIAX); } static void do_vfp_xp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDBX); } static void do_vfp_dp_rd_rm (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm); } static void do_vfp_dp_rn_rd (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); } static void do_vfp_dp_rd_rn (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn); } static void do_vfp_dp_rd_rn_rm (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm); } static void do_vfp_dp_rd (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); } static void do_vfp_dp_rm_rd_rn (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn); } /* VFPv3 instructions. */ static void do_vfp_sp_const (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); inst.instruction |= (inst.operands[1].imm & 0xf0) << 12; inst.instruction |= (inst.operands[1].imm & 0x0f); } static void do_vfp_dp_const (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); inst.instruction |= (inst.operands[1].imm & 0xf0) << 12; inst.instruction |= (inst.operands[1].imm & 0x0f); } static void vfp_conv (int srcsize) { int immbits = srcsize - inst.operands[1].imm; if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize)) { /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16. i.e. immbits must be in range 0 - 16. */ inst.error = _("immediate value out of range, expected range [0, 16]"); return; } else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize)) { /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32. i.e. immbits must be in range 0 - 31. */ inst.error = _("immediate value out of range, expected range [1, 32]"); return; } inst.instruction |= (immbits & 1) << 5; inst.instruction |= (immbits >> 1); } static void do_vfp_sp_conv_16 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); vfp_conv (16); } static void do_vfp_dp_conv_16 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); vfp_conv (16); } static void do_vfp_sp_conv_32 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); vfp_conv (32); } static void do_vfp_dp_conv_32 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); vfp_conv (32); } /* iWMMXt instructions: strictly in alphabetical order. */ static void do_iwmmxt_tandorc (void) { constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here")); } static void do_iwmmxt_textrc (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm; } static void do_iwmmxt_textrm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tinsr (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tmia (void) { inst.instruction |= inst.operands[0].reg << 5; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } static void do_iwmmxt_waligni (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 20; } static void do_iwmmxt_wmerge (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 21; } static void do_iwmmxt_wmov (void) { /* WMOV rD, rN is an alias for WOR rD, rN, rN. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_iwmmxt_wldstbh (void) { int reloc; inst.instruction |= inst.operands[0].reg << 12; if (thumb_mode) reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2; else reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2; encode_arm_cp_address (1, true, false, reloc); } static void do_iwmmxt_wldstw (void) { /* RIWR_RIWC clears .isreg for a control register. */ if (!inst.operands[0].isreg) { constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction |= 0xf0000000; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, true, true, 0); } static void do_iwmmxt_wldstd (void) { inst.instruction |= inst.operands[0].reg << 12; if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2) && inst.operands[1].immisreg) { inst.instruction &= ~0x1a000ff; inst.instruction |= (0xfU << 28); if (inst.operands[1].preind) inst.instruction |= PRE_INDEX; if (!inst.operands[1].negative) inst.instruction |= INDEX_UP; if (inst.operands[1].writeback) inst.instruction |= WRITE_BACK; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.relocs[0].exp.X_add_number << 4; inst.instruction |= inst.operands[1].imm; } else encode_arm_cp_address (1, true, false, 0); } static void do_iwmmxt_wshufh (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16); inst.instruction |= (inst.operands[2].imm & 0x0f); } static void do_iwmmxt_wzero (void) { /* WZERO reg is an alias for WANDN reg, reg, reg. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[0].reg << 16; } static void do_iwmmxt_wrwrwr_or_imm5 (void) { if (inst.operands[2].isreg) do_rd_rn_rm (); else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2), _("immediate operand requires iWMMXt2")); do_rd_rn (); if (inst.operands[2].imm == 0) { switch ((inst.instruction >> 20) & 0xf) { case 4: case 5: case 6: case 7: /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */ inst.operands[2].imm = 16; inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20); break; case 8: case 9: case 10: case 11: /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */ inst.operands[2].imm = 32; inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20); break; case 12: case 13: case 14: case 15: { /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */ unsigned long wrn; wrn = (inst.instruction >> 16) & 0xf; inst.instruction &= 0xff0fff0f; inst.instruction |= wrn; /* Bail out here; the instruction is now assembled. */ return; } } } /* Map 32 -> 0, etc. */ inst.operands[2].imm &= 0x1f; inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf); } } /* XScale instructions. Also sorted arithmetic before move. */ /* Xscale multiply-accumulate (argument parse) MIAcc acc0,Rm,Rs MIAPHcc acc0,Rm,Rs MIAxycc acc0,Rm,Rs. */ static void do_xsc_mia (void) { inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } /* Xscale move-accumulator-register (argument parse) MARcc acc0,RdLo,RdHi. */ static void do_xsc_mar (void) { inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } /* Xscale move-register-accumulator (argument parse) MRAcc RdLo,RdHi,acc0. */ static void do_xsc_mra (void) { constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } /* Encoding functions relevant only to Thumb. */ /* inst.operands[i] is a shifted-register operand; encode it into inst.instruction in the format used by Thumb32. */ static void encode_thumb32_shifted_operand (int i) { unsigned int value = inst.relocs[0].exp.X_add_number; unsigned int shift = inst.operands[i].shift_kind; constraint (inst.operands[i].immisreg, _("shift by register not allowed in thumb mode")); inst.instruction |= inst.operands[i].reg; if (shift == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 4; else { constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); constraint (value > 32 || (value == 32 && (shift == SHIFT_LSL || shift == SHIFT_ROR)), _("shift expression is too large")); if (value == 0) shift = SHIFT_LSL; else if (value == 32) value = 0; inst.instruction |= shift << 4; inst.instruction |= (value & 0x1c) << 10; inst.instruction |= (value & 0x03) << 6; } } /* inst.operands[i] was set up by parse_address. Encode it into a Thumb32 format load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction; if is_d is true, reject forms that cannot be used with a D instruction. If it is a store insn, reject PC in Rn. */ static void encode_thumb32_addr_mode (int i, bool is_t, bool is_d) { const bool is_pc = (inst.operands[i].reg == REG_PC); constraint (!inst.operands[i].isreg, _("Instruction does not support =N addresses")); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].immisreg) { constraint (is_pc, BAD_PC_ADDRESSING); constraint (is_t || is_d, _("cannot use register index with this instruction")); constraint (inst.operands[i].negative, _("Thumb does not support negative register indexing")); constraint (inst.operands[i].postind, _("Thumb does not support register post-indexing")); constraint (inst.operands[i].writeback, _("Thumb does not support register indexing with writeback")); constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL, _("Thumb supports only LSL in shifted register indexing")); inst.instruction |= inst.operands[i].imm; if (inst.operands[i].shifted) { constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); constraint (inst.relocs[0].exp.X_add_number < 0 || inst.relocs[0].exp.X_add_number > 3, _("shift out of range")); inst.instruction |= inst.relocs[0].exp.X_add_number << 4; } inst.relocs[0].type = BFD_RELOC_UNUSED; } else if (inst.operands[i].preind) { constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK); constraint (is_t && inst.operands[i].writeback, _("cannot use writeback with this instruction")); constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0), BAD_PC_ADDRESSING); if (is_d) { inst.instruction |= 0x01000000; if (inst.operands[i].writeback) inst.instruction |= 0x00200000; } else { inst.instruction |= 0x00000c00; if (inst.operands[i].writeback) inst.instruction |= 0x00000100; } inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else if (inst.operands[i].postind) { gas_assert (inst.operands[i].writeback); constraint (is_pc, _("cannot use post-indexing with PC-relative addressing")); constraint (is_t, _("cannot use post-indexing with this instruction")); if (is_d) inst.instruction |= 0x00200000; else inst.instruction |= 0x00000900; inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else /* unindexed - only for coprocessor */ inst.error = _("instruction does not accept unindexed addressing"); } /* Table of Thumb instructions which exist in 16- and/or 32-bit encodings (the latter only in post-V6T2 cores). The index is the value used in the insns table below. When there is more than one possible 16-bit encoding for the instruction, this table always holds variant (1). Also contains several pseudo-instructions used during relaxation. */ #define T16_32_TAB \ X(_adc, 4140, eb400000), \ X(_adcs, 4140, eb500000), \ X(_add, 1c00, eb000000), \ X(_adds, 1c00, eb100000), \ X(_addi, 0000, f1000000), \ X(_addis, 0000, f1100000), \ X(_add_pc,000f, f20f0000), \ X(_add_sp,000d, f10d0000), \ X(_adr, 000f, f20f0000), \ X(_and, 4000, ea000000), \ X(_ands, 4000, ea100000), \ X(_asr, 1000, fa40f000), \ X(_asrs, 1000, fa50f000), \ X(_aut, 0000, f3af802d), \ X(_autg, 0000, fb500f00), \ X(_b, e000, f000b000), \ X(_bcond, d000, f0008000), \ X(_bf, 0000, f040e001), \ X(_bfcsel,0000, f000e001), \ X(_bfx, 0000, f060e001), \ X(_bfl, 0000, f000c001), \ X(_bflx, 0000, f070e001), \ X(_bic, 4380, ea200000), \ X(_bics, 4380, ea300000), \ X(_bxaut, 0000, fb500f10), \ X(_cinc, 0000, ea509000), \ X(_cinv, 0000, ea50a000), \ X(_cmn, 42c0, eb100f00), \ X(_cmp, 2800, ebb00f00), \ X(_cneg, 0000, ea50b000), \ X(_cpsie, b660, f3af8400), \ X(_cpsid, b670, f3af8600), \ X(_cpy, 4600, ea4f0000), \ X(_csel, 0000, ea508000), \ X(_cset, 0000, ea5f900f), \ X(_csetm, 0000, ea5fa00f), \ X(_csinc, 0000, ea509000), \ X(_csinv, 0000, ea50a000), \ X(_csneg, 0000, ea50b000), \ X(_dec_sp,80dd, f1ad0d00), \ X(_dls, 0000, f040e001), \ X(_dlstp, 0000, f000e001), \ X(_eor, 4040, ea800000), \ X(_eors, 4040, ea900000), \ X(_inc_sp,00dd, f10d0d00), \ X(_lctp, 0000, f00fe001), \ X(_ldmia, c800, e8900000), \ X(_ldr, 6800, f8500000), \ X(_ldrb, 7800, f8100000), \ X(_ldrh, 8800, f8300000), \ X(_ldrsb, 5600, f9100000), \ X(_ldrsh, 5e00, f9300000), \ X(_ldr_pc,4800, f85f0000), \ X(_ldr_pc2,4800, f85f0000), \ X(_ldr_sp,9800, f85d0000), \ X(_le, 0000, f00fc001), \ X(_letp, 0000, f01fc001), \ X(_lsl, 0000, fa00f000), \ X(_lsls, 0000, fa10f000), \ X(_lsr, 0800, fa20f000), \ X(_lsrs, 0800, fa30f000), \ X(_mov, 2000, ea4f0000), \ X(_movs, 2000, ea5f0000), \ X(_mul, 4340, fb00f000), \ X(_muls, 4340, ffffffff), /* no 32b muls */ \ X(_mvn, 43c0, ea6f0000), \ X(_mvns, 43c0, ea7f0000), \ X(_neg, 4240, f1c00000), /* rsb #0 */ \ X(_negs, 4240, f1d00000), /* rsbs #0 */ \ X(_orr, 4300, ea400000), \ X(_orrs, 4300, ea500000), \ X(_pac, 0000, f3af801d), \ X(_pacbti, 0000, f3af800d), \ X(_pacg, 0000, fb60f000), \ X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \ X(_push, b400, e92d0000), /* stmdb sp!,... */ \ X(_rev, ba00, fa90f080), \ X(_rev16, ba40, fa90f090), \ X(_revsh, bac0, fa90f0b0), \ X(_ror, 41c0, fa60f000), \ X(_rors, 41c0, fa70f000), \ X(_sbc, 4180, eb600000), \ X(_sbcs, 4180, eb700000), \ X(_stmia, c000, e8800000), \ X(_str, 6000, f8400000), \ X(_strb, 7000, f8000000), \ X(_strh, 8000, f8200000), \ X(_str_sp,9000, f84d0000), \ X(_sub, 1e00, eba00000), \ X(_subs, 1e00, ebb00000), \ X(_subi, 8000, f1a00000), \ X(_subis, 8000, f1b00000), \ X(_sxtb, b240, fa4ff080), \ X(_sxth, b200, fa0ff080), \ X(_tst, 4200, ea100f00), \ X(_uxtb, b2c0, fa5ff080), \ X(_uxth, b280, fa1ff080), \ X(_nop, bf00, f3af8000), \ X(_yield, bf10, f3af8001), \ X(_wfe, bf20, f3af8002), \ X(_wfi, bf30, f3af8003), \ X(_wls, 0000, f040c001), \ X(_wlstp, 0000, f000c001), \ X(_sev, bf40, f3af8004), \ X(_sevl, bf50, f3af8005), \ X(_udf, de00, f7f0a000) /* To catch errors in encoding functions, the codes are all offset by 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined as 16-bit instructions. */ #define X(a,b,c) T_MNEM##a enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB }; #undef X #define X(a,b,c) 0x##b static const unsigned short thumb_op16[] = { T16_32_TAB }; #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)]) #undef X #define X(a,b,c) 0x##c static const unsigned int thumb_op32[] = { T16_32_TAB }; #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)]) #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000) #undef X #undef T16_32_TAB /* Thumb instruction encoders, in alphabetical order. */ /* ADDW or SUBW. */ static void do_t_add_sub_w (void) { int Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this is the SP-{plus,minus}-immediate form of the instruction. */ if (Rn == REG_SP) constraint (Rd == REG_PC, BAD_PC); else reject_bad_reg (Rd); inst.instruction |= (Rn << 16) | (Rd << 8); inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12; } /* Parse an add or subtract instruction. We get here with inst.instruction equaling any of THUMB_OPCODE_add, adds, sub, or subs. */ static void do_t_add_sub (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ if (Rd == REG_PC) set_pred_insn_type_last (); if (unified_syntax) { bool flags; bool narrow; int opcode; flags = (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs); if (flags) narrow = !in_pred_block (); else narrow = in_pred_block (); if (!inst.operands[2].isreg) { int add; if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP); add = (inst.instruction == T_MNEM_add || inst.instruction == T_MNEM_adds); opcode = 0; if (inst.size_req != 4) { /* Attempt to use a narrow opcode, with relaxation if appropriate. */ if (Rd == REG_SP && Rs == REG_SP && !flags) opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp; else if (Rd <= 7 && Rs == REG_SP && add && !flags) opcode = T_MNEM_add_sp; else if (Rd <= 7 && Rs == REG_PC && add && !flags) opcode = T_MNEM_add_pc; else if (Rd <= 7 && Rs <= 7 && narrow) { if (flags) opcode = add ? T_MNEM_addis : T_MNEM_subis; else opcode = add ? T_MNEM_addi : T_MNEM_subi; } if (opcode) { inst.instruction = THUMB_OP16(opcode); inst.instruction |= (Rd << 4) | Rs; if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC || (inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)) { if (inst.size_req == 2) inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD; else inst.relax = opcode; } } else constraint (inst.size_req == 2, _("cannot honor width suffix")); } if (inst.size_req == 4 || (inst.size_req != 2 && !opcode)) { constraint ((inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC) && (inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) , THUMB1_RELOC_ONLY); if (Rd == REG_PC) { constraint (add, BAD_PC); constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs, _("only SUBS PC, LR, #const allowed")); constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); constraint (inst.relocs[0].exp.X_add_number < 0 || inst.relocs[0].exp.X_add_number > 0xff, _("immediate value out of range")); inst.instruction = T2_SUBS_PC_LR | inst.relocs[0].exp.X_add_number; inst.relocs[0].type = BFD_RELOC_UNUSED; return; } else if (Rs == REG_PC) { /* Always use addw/subw. */ inst.instruction = add ? 0xf20f0000 : 0xf2af0000; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12; } else { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; if (flags) inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; else inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM; } inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; } } else { unsigned int value = inst.relocs[0].exp.X_add_number; unsigned int shift = inst.operands[2].shift_kind; Rn = inst.operands[2].reg; /* See if we can do this with a 16-bit instruction. */ if (!inst.operands[2].shifted && inst.size_req != 4) { if (Rd > 7 || Rs > 7 || Rn > 7) narrow = false; if (narrow) { inst.instruction = ((inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_add) ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); return; } if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn)) { /* Thumb-1 cores (except v6-M) require at least one high register in a narrow non flag setting add. */ if (Rd > 7 || Rn > 7 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2) || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr)) { if (Rd == Rn) { Rn = Rs; Rs = Rd; } inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); inst.instruction |= Rn << 3; return; } } } constraint (Rd == REG_PC, BAD_PC); if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP); constraint (Rs == REG_PC, BAD_PC); reject_bad_reg (Rn); /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; constraint (Rd == REG_SP && Rs == REG_SP && value > 3, _("shift value over 3 not allowed in thumb mode")); constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL, _("only LSL shift allowed in thumb mode")); encode_thumb32_shifted_operand (2); } } else { constraint (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs, BAD_THUMB32); if (!inst.operands[2].isreg) /* Rd, Rs, #imm */ { constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP)) || (Rs > 7 && Rs != REG_SP && Rs != REG_PC), BAD_HIREG); inst.instruction = (inst.instruction == T_MNEM_add ? 0x0000 : 0x8000); inst.instruction |= (Rd << 4) | Rs; inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD; return; } Rn = inst.operands[2].reg; constraint (inst.operands[2].shifted, _("unshifted register required")); /* We now have Rd, Rs, and Rn set to registers. */ if (Rd > 7 || Rs > 7 || Rn > 7) { /* Can't do this for SUB. */ constraint (inst.instruction == T_MNEM_sub, BAD_HIREG); inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); if (Rs == Rd) inst.instruction |= Rn << 3; else if (Rn == Rd) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } else { inst.instruction = (inst.instruction == T_MNEM_add ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); } } } static void do_t_adr (void) { unsigned Rd; Rd = inst.operands[0].reg; reject_bad_reg (Rd); if (unified_syntax && inst.size_req == 0 && Rd <= 7) { /* Defer to section relaxation. */ inst.relax = inst.instruction; inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd << 4; } else if (unified_syntax && inst.size_req != 2) { /* Generate a 32-bit opcode. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12; inst.relocs[0].pc_rel = 1; } else { /* Generate a 16-bit opcode. */ inst.instruction = THUMB_OP16 (inst.instruction); inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD; inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */ inst.relocs[0].pc_rel = 1; inst.instruction |= Rd << 4; } if (inst.relocs[0].exp.X_op == O_symbol && inst.relocs[0].exp.X_add_symbol != NULL && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol) && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol)) inst.relocs[0].exp.X_add_number += 1; } /* Arithmetic instructions for which there is just one 16-bit instruction encoding, and it allows only two low registers. For maximal compatibility with ARM syntax, we allow three register operands even when Thumb-32 instructions are not available, as long as the first two are identical. For instance, both "sbc r0,r1" and "sbc r0,r0,r1" are allowed. */ static void do_t_arit3 (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rs); if (inst.operands[2].isreg) reject_bad_reg (Rn); if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { bool narrow; /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction)) narrow = !in_pred_block (); else narrow = in_pred_block (); if (Rd > 7 || Rn > 7 || Rs > 7) narrow = false; if (inst.operands[2].shifted) narrow = false; if (inst.size_req == 4) narrow = false; if (narrow && Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); constraint (Rd != Rs, _("dest and source1 must be the same register")); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; } } /* Similarly, but for instructions where the arithmetic operation is commutative, so we can allow either of them to be different from the destination operand in a 16-bit instruction. For instance, all three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are accepted. */ static void do_t_arit3c (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rs); if (inst.operands[2].isreg) reject_bad_reg (Rn); if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { bool narrow; /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction)) narrow = !in_pred_block (); else narrow = in_pred_block (); if (Rd > 7 || Rn > 7 || Rs > 7) narrow = false; if (inst.operands[2].shifted) narrow = false; if (inst.size_req == 4) narrow = false; if (narrow) { if (Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } if (Rd == Rn) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rs << 3; return; } } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; if (Rd == Rs) inst.instruction |= Rn << 3; else if (Rd == Rn) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } } static void do_t_bfc (void) { unsigned Rd; unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ Rd = inst.operands[0].reg; reject_bad_reg (Rd); inst.instruction |= Rd << 8; inst.instruction |= (inst.operands[1].imm & 0x1c) << 10; inst.instruction |= (inst.operands[1].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfi (void) { int Rd, Rn; unsigned int msb; Rd = inst.operands[0].reg; reject_bad_reg (Rd); /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) Rn = REG_PC; else { Rn = inst.operands[1].reg; reject_bad_reg (Rn); } msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfx (void) { unsigned Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= inst.operands[3].imm - 1; } /* ARM V5 Thumb BLX (argument parse) BLX which is BLX(1) BLX which is BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. ??? How to take advantage of the additional two bits of displacement available in Thumb32 mode? Need new relocation? */ static void do_t_blx (void) { set_pred_insn_type_last (); if (inst.operands[0].isreg) { constraint (inst.operands[0].reg == REG_PC, BAD_PC); /* We have a register, so this is BLX(2). */ inst.instruction |= inst.operands[0].reg << 3; } else { /* No register. This must be BLX(1). */ inst.instruction = 0xf000e800; encode_branch (BFD_RELOC_THUMB_PCREL_BLX); } } static void do_t_branch (void) { int opcode; int cond; bfd_reloc_code_real_type reloc; cond = inst.cond; set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); if (in_pred_block ()) { /* Conditional branches inside IT blocks are encoded as unconditional branches. */ cond = COND_ALWAYS; } else cond = inst.cond; if (cond != COND_ALWAYS) opcode = T_MNEM_bcond; else opcode = inst.instruction; if (unified_syntax && (inst.size_req == 4 || (inst.size_req != 2 && (inst.operands[0].hasreloc || inst.relocs[0].exp.X_op == O_constant)))) { inst.instruction = THUMB_OP32(opcode); if (cond == COND_ALWAYS) reloc = BFD_RELOC_THUMB_PCREL_BRANCH25; else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2), _("selected architecture does not support " "wide conditional branch instruction")); gas_assert (cond != 0xF); inst.instruction |= cond << 22; reloc = BFD_RELOC_THUMB_PCREL_BRANCH20; } } else { inst.instruction = THUMB_OP16(opcode); if (cond == COND_ALWAYS) reloc = BFD_RELOC_THUMB_PCREL_BRANCH12; else { inst.instruction |= cond << 8; reloc = BFD_RELOC_THUMB_PCREL_BRANCH9; } /* Allow section relaxation. */ if (unified_syntax && inst.size_req != 2) inst.relax = opcode; } inst.relocs[0].type = reloc; inst.relocs[0].pc_rel = 1; } /* Actually do the work for Thumb state bkpt and hlt. The only difference between the two is the maximum immediate allowed - which is passed in RANGE. */ static void do_t_bkpt_hlt1 (int range) { constraint (inst.cond != COND_ALWAYS, _("instruction is always unconditional")); if (inst.operands[0].present) { constraint (inst.operands[0].imm > range, _("immediate value out of range")); inst.instruction |= inst.operands[0].imm; } set_pred_insn_type (NEUTRAL_IT_INSN); } static void do_t_hlt (void) { do_t_bkpt_hlt1 (63); } static void do_t_bkpt (void) { do_t_bkpt_hlt1 (255); } static void do_t_branch23 (void) { set_pred_insn_type_last (); encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23); /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in this file. We used to simply ignore the PLT reloc type here -- the branch encoding is now needed to deal with TLSCALL relocs. So if we see a PLT reloc now, put it back to how it used to be to keep the preexisting behaviour. */ if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32) inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23; #if defined(OBJ_COFF) /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if ( inst.relocs[0].exp.X_op == O_symbol && inst.relocs[0].exp.X_add_symbol != NULL && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol) && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol)) inst.relocs[0].exp.X_add_symbol = find_real_start (inst.relocs[0].exp.X_add_symbol); #endif } static void do_t_bx (void) { set_pred_insn_type_last (); inst.instruction |= inst.operands[0].reg << 3; /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc should cause the alignment to be checked once it is known. This is because BX PC only works if the instruction is word aligned. */ } static void do_t_bxj (void) { int Rm; set_pred_insn_type_last (); Rm = inst.operands[0].reg; reject_bad_reg (Rm); inst.instruction |= Rm << 16; } static void do_t_clz (void) { unsigned Rd; unsigned Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rm << 16; inst.instruction |= Rm; } /* For the Armv8.1-M conditional instructions. */ static void do_t_cond (void) { unsigned Rd, Rn, Rm; signed int cond; constraint (inst.cond != COND_ALWAYS, BAD_COND); Rd = inst.operands[0].reg; switch (inst.instruction) { case T_MNEM_csinc: case T_MNEM_csinv: case T_MNEM_csneg: case T_MNEM_csel: Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; cond = inst.operands[3].imm; constraint (Rn == REG_SP, BAD_SP); constraint (Rm == REG_SP, BAD_SP); break; case T_MNEM_cinc: case T_MNEM_cinv: case T_MNEM_cneg: Rn = inst.operands[1].reg; cond = inst.operands[2].imm; /* Invert the last bit to invert the cond. */ cond = TOGGLE_BIT (cond, 0); constraint (Rn == REG_SP, BAD_SP); Rm = Rn; break; case T_MNEM_csetm: case T_MNEM_cset: cond = inst.operands[1].imm; /* Invert the last bit to invert the cond. */ cond = TOGGLE_BIT (cond, 0); Rn = REG_PC; Rm = REG_PC; break; default: abort (); } set_pred_insn_type (OUTSIDE_PRED_INSN); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; inst.instruction |= cond << 4; } static void do_t_csdb (void) { set_pred_insn_type (OUTSIDE_PRED_INSN); } static void do_t_cps (void) { set_pred_insn_type (OUTSIDE_PRED_INSN); inst.instruction |= inst.operands[0].imm; } static void do_t_cpsi (void) { set_pred_insn_type (OUTSIDE_PRED_INSN); if (unified_syntax && (inst.operands[1].present || inst.size_req == 4) && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm)) { unsigned int imod = (inst.instruction & 0x0030) >> 4; inst.instruction = 0xf3af8000; inst.instruction |= imod << 9; inst.instruction |= inst.operands[0].imm << 5; if (inst.operands[1].present) inst.instruction |= 0x100 | inst.operands[1].imm; } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1) && (inst.operands[0].imm & 4), _("selected processor does not support 'A' form " "of this instruction")); constraint (inst.operands[1].present || inst.size_req == 4, _("Thumb does not support the 2-argument " "form of this instruction")); inst.instruction |= inst.operands[0].imm; } } /* THUMB CPY instruction (argument parse). */ static void do_t_cpy (void) { if (inst.size_req == 4) { inst.instruction = THUMB_OP32 (T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg; } else { inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_cbz (void) { set_pred_insn_type (OUTSIDE_PRED_INSN); constraint (inst.operands[0].reg > 7, BAD_HIREG); inst.instruction |= inst.operands[0].reg; inst.relocs[0].pc_rel = 1; inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7; } static void do_t_dbg (void) { inst.instruction |= inst.operands[0].imm; } static void do_t_div (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rn = (inst.operands[1].present ? inst.operands[1].reg : Rd); Rm = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; } static void do_t_hint (void) { if (unified_syntax && inst.size_req == 4) inst.instruction = THUMB_OP32 (inst.instruction); else inst.instruction = THUMB_OP16 (inst.instruction); } static void do_t_it (void) { unsigned int cond = inst.operands[0].imm; set_pred_insn_type (IT_INSN); now_pred.mask = (inst.instruction & 0xf) | 0x10; now_pred.cc = cond; now_pred.warn_deprecated = false; now_pred.type = SCALAR_PRED; /* If the condition is a negative condition, invert the mask. */ if ((cond & 0x1) == 0x0) { unsigned int mask = inst.instruction & 0x000f; if ((mask & 0x7) == 0) { /* No conversion needed. */ now_pred.block_length = 1; } else if ((mask & 0x3) == 0) { mask ^= 0x8; now_pred.block_length = 2; } else if ((mask & 0x1) == 0) { mask ^= 0xC; now_pred.block_length = 3; } else { mask ^= 0xE; now_pred.block_length = 4; } inst.instruction &= 0xfff0; inst.instruction |= mask; } inst.instruction |= cond << 4; } /* Helper function used for both push/pop and ldm/stm. */ static void encode_thumb2_multi (bool do_io, int base, unsigned mask, bool writeback) { bool load, store; gas_assert (base != -1 || !do_io); load = do_io && ((inst.instruction & (1 << 20)) != 0); store = do_io && !load; if (mask & (1 << 13)) inst.error = _("SP not allowed in register list"); if (do_io && (mask & (1 << base)) != 0 && writeback) inst.error = _("having the base register in the register list when " "using write back is UNPREDICTABLE"); if (load) { if (mask & (1 << 15)) { if (mask & (1 << 14)) inst.error = _("LR and PC should not both be in register list"); else set_pred_insn_type_last (); } } else if (store) { if (mask & (1 << 15)) inst.error = _("PC not allowed in register list"); } if (do_io && ((mask & (mask - 1)) == 0)) { /* Single register transfers implemented as str/ldr. */ if (writeback) { if (inst.instruction & (1 << 23)) inst.instruction = 0x00000b04; /* ia! -> [base], #4 */ else inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */ } else { if (inst.instruction & (1 << 23)) inst.instruction = 0x00800000; /* ia -> [base] */ else inst.instruction = 0x00000c04; /* db -> [base, #-4] */ } inst.instruction |= 0xf8400000; if (load) inst.instruction |= 0x00100000; mask = ffs (mask) - 1; mask <<= 12; } else if (writeback) inst.instruction |= WRITE_BACK; inst.instruction |= mask; if (do_io) inst.instruction |= base << 16; } static void do_t_push_pop (void); static void do_t_ldmstm (void) { /* This really doesn't seem worth it. */ constraint (inst.relocs[0].type != BFD_RELOC_UNUSED, _("expression too complex")); constraint (inst.operands[1].writeback, _("Thumb load/store multiple does not support {reglist}^")); if (unified_syntax) { bool narrow; unsigned mask; narrow = false; /* Try to convert ldm/stm to a 16-bit instruction. */ /* First, handle SP as the base. */ if (inst.operands[0].reg == REG_SP) { /* Try converting to push/pop. */ if (inst.operands[0].writeback && (inst.instruction == T_OPCODE_STMFD /* Push. */ || inst.instruction == T_MNEM_ldmia)) /* Pop. */ { inst.instruction = (inst.instruction == T_MNEM_ldmia ? T_MNEM_pop : T_MNEM_push); inst.operands[0] = inst.operands[1]; do_t_push_pop (); return; } /* For single registers try a simple ldr/str. */ if (!inst.operands[0].writeback && (inst.instruction == T_MNEM_stmia || inst.instruction == T_MNEM_ldmia) && (inst.operands[1].imm & (inst.operands[1].imm - 1)) == 0) { unsigned long opcode = T_MNEM_str_sp; if (inst.instruction == T_MNEM_ldmia) opcode = T_MNEM_ldr_sp; inst.instruction = THUMB_OP16 (opcode); inst.instruction |= ((ffs (inst.operands[1].imm) - 1) << 8); narrow = true; } } /* For ldmia/stmia with all low registers we can try 16-bit encodings. */ else if (inst.size_req != 4 && (inst.instruction == T_MNEM_ldmia || inst.instruction == T_MNEM_stmia) && inst.operands[0].reg <= 7 && !(inst.operands[1].imm & ~0xff)) { /* For single registers try a simple ldr/str. */ if (!inst.operands[0].writeback && (inst.operands[1].imm & (inst.operands[1].imm - 1)) == 0) { unsigned long opcode = T_MNEM_ldr; if (inst.instruction == T_MNEM_stmia) opcode = T_MNEM_str; inst.instruction = THUMB_OP16 (opcode); inst.instruction |= inst.operands[0].reg << 3; inst.instruction |= (ffs (inst.operands[1].imm) - 1); narrow = true; } /* Finally, try a 16-bit ldm/stm. */ else { mask = 1 << inst.operands[0].reg; /* STMIA must have writeback; LDMIA must have writeback if and only if the base register is not in the transfer list. */ if (inst.instruction == T_MNEM_stmia ? inst.operands[0].writeback : (inst.operands[0].writeback == !(inst.operands[1].imm & mask))) { /* For STMIA, if the base register is in the transfer list, the value stored is UNKOWN if it is not the first register in the list. */ if (inst.instruction == T_MNEM_stmia && (inst.operands[1].imm & mask) && (inst.operands[1].imm & (mask - 1))) as_warn (_("value stored for r%d is UNKNOWN"), inst.operands[0].reg); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; narrow = true; } } } if (!narrow) { if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); encode_thumb2_multi (true /* do_io */, inst.operands[0].reg, inst.operands[1].imm, inst.operands[0].writeback); } } else { constraint (inst.operands[0].reg > 7 || (inst.operands[1].imm & ~0xff), BAD_HIREG); constraint (inst.instruction != T_MNEM_ldmia && inst.instruction != T_MNEM_stmia, _("Thumb-2 instruction only valid in unified syntax")); if (inst.instruction == T_MNEM_stmia) { if (!inst.operands[0].writeback) as_warn (_("this instruction will write back the base register")); if ((inst.operands[1].imm & (1 << inst.operands[0].reg)) && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1))) as_warn (_("value stored for r%d is UNKNOWN"), inst.operands[0].reg); } else { if (!inst.operands[0].writeback && !(inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will write back the base register")); else if (inst.operands[0].writeback && (inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will not write back the base register")); } inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; } } static void do_t_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative, BAD_ADDR_MODE); constraint ((inst.operands[1].reg == REG_PC), BAD_PC); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_ldrexd (void) { if (!inst.operands[1].present) { constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed as first register " "when second register is omitted")); inst.operands[1].reg = inst.operands[0].reg + 1; } constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; } static void do_t_ldst (void) { unsigned long opcode; int Rn; if (inst.operands[0].isreg && !inst.operands[0].preind && inst.operands[0].reg == REG_PC) set_pred_insn_type_last (); opcode = inst.instruction; if (unified_syntax) { if (!inst.operands[1].isreg) { if (opcode <= 0xffff) inst.instruction = THUMB_OP32 (opcode); if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/false)) return; } if (inst.operands[1].isreg && !inst.operands[1].writeback && !inst.operands[1].shifted && !inst.operands[1].postind && !inst.operands[1].negative && inst.operands[0].reg <= 7 && opcode <= 0xffff && inst.size_req != 4) { /* Insn may have a 16-bit form. */ Rn = inst.operands[1].reg; if (inst.operands[1].immisreg) { inst.instruction = THUMB_OP16 (opcode); /* [Rn, Rik] */ if (Rn <= 7 && inst.operands[1].imm <= 7) goto op16; else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str) reject_bad_reg (inst.operands[1].imm); } else if ((Rn <= 7 && opcode != T_MNEM_ldrsh && opcode != T_MNEM_ldrsb) || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr) || (Rn == REG_SP && opcode == T_MNEM_str)) { /* [Rn, #const] */ if (Rn > 7) { if (Rn == REG_PC) { if (inst.relocs[0].pc_rel) opcode = T_MNEM_ldr_pc2; else opcode = T_MNEM_ldr_pc; } else { if (opcode == T_MNEM_ldr) opcode = T_MNEM_ldr_sp; else opcode = T_MNEM_str_sp; } inst.instruction = inst.operands[0].reg << 8; } else { inst.instruction = inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } inst.instruction |= THUMB_OP16 (opcode); if (inst.size_req == 2) inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET; else inst.relax = opcode; return; } } /* Definitely a 32-bit variant. */ /* Warning for Erratum 752419. */ if (opcode == T_MNEM_ldr && inst.operands[0].reg == REG_SP && inst.operands[1].writeback == 1 && !inst.operands[1].immisreg) { if (no_cpu_selected () || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7) && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a) && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r))) as_warn (_("This instruction may be unpredictable " "if executed on M-profile cores " "with interrupts enabled.")); } /* Do some validations regarding addressing modes. */ if (inst.operands[1].immisreg) reject_bad_reg (inst.operands[1].imm); constraint (inst.operands[1].writeback == 1 && inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction = THUMB_OP32 (opcode); inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/false, /*is_d=*/false); check_ldr_r15_aligned (); return; } constraint (inst.operands[0].reg > 7, BAD_HIREG); if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb) { /* Only [Rn,Rm] is acceptable. */ constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG); constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg || inst.operands[1].postind || inst.operands[1].shifted || inst.operands[1].negative, _("Thumb does not support this addressing mode")); inst.instruction = THUMB_OP16 (inst.instruction); goto op16; } inst.instruction = THUMB_OP16 (inst.instruction); if (!inst.operands[1].isreg) if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/false)) return; constraint (!inst.operands[1].preind || inst.operands[1].shifted || inst.operands[1].writeback, _("Thumb does not support this addressing mode")); if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP) { constraint (inst.instruction & 0x0600, _("byte or halfword not valid for base register")); constraint (inst.operands[1].reg == REG_PC && !(inst.instruction & THUMB_LOAD_BIT), _("r15 based store not allowed")); constraint (inst.operands[1].immisreg, _("invalid base register for register offset")); if (inst.operands[1].reg == REG_PC) inst.instruction = T_OPCODE_LDR_PC; else if (inst.instruction & THUMB_LOAD_BIT) inst.instruction = T_OPCODE_LDR_SP; else inst.instruction = T_OPCODE_STR_SP; inst.instruction |= inst.operands[0].reg << 8; inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET; return; } constraint (inst.operands[1].reg > 7, BAD_HIREG); if (!inst.operands[1].immisreg) { /* Immediate offset. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET; return; } /* Register offset. */ constraint (inst.operands[1].imm > 7, BAD_HIREG); constraint (inst.operands[1].negative, _("Thumb does not support this addressing mode")); op16: switch (inst.instruction) { case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break; case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break; case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break; case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break; case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break; case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break; case 0x5600 /* ldrsb */: case 0x5e00 /* ldrsh */: break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.instruction |= inst.operands[1].imm << 6; } static void do_t_ldstd (void) { if (!inst.operands[1].present) { inst.operands[1].reg = inst.operands[0].reg + 1; constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); constraint (inst.operands[0].reg == REG_R12, _("r12 not allowed here")); } if (inst.operands[2].writeback && (inst.operands[0].reg == inst.operands[2].reg || inst.operands[1].reg == inst.operands[2].reg)) as_warn (_("base register written back, and overlaps " "one of transfer registers")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; encode_thumb32_addr_mode (2, /*is_t=*/false, /*is_d=*/true); } static void do_t_ldstt (void) { inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/true, /*is_d=*/false); } static void do_t_mla (void) { unsigned Rd, Rn, Rm, Ra; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; Ra = inst.operands[3].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); reject_bad_reg (Ra); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; inst.instruction |= Ra << 12; } static void do_t_mlal (void) { unsigned RdLo, RdHi, Rn, Rm; RdLo = inst.operands[0].reg; RdHi = inst.operands[1].reg; Rn = inst.operands[2].reg; Rm = inst.operands[3].reg; reject_bad_reg (RdLo); reject_bad_reg (RdHi); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= RdLo << 12; inst.instruction |= RdHi << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; } static void do_t_mov_cmp (void) { unsigned Rn, Rm; Rn = inst.operands[0].reg; Rm = inst.operands[1].reg; if (Rn == REG_PC) set_pred_insn_type_last (); if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mov || inst.instruction == T_MNEM_movs) ? 8 : 16; unsigned long opcode; bool narrow; bool low_regs; low_regs = (Rn <= 7 && Rm <= 7); opcode = inst.instruction; if (in_pred_block ()) narrow = opcode != T_MNEM_movs; else narrow = opcode != T_MNEM_movs || low_regs; if (inst.size_req == 4 || inst.operands[1].shifted) narrow = false; /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */ if (opcode == T_MNEM_movs && inst.operands[1].isreg && !inst.operands[1].shifted && Rn == REG_PC && Rm == REG_LR) { inst.instruction = T2_SUBS_PC_LR; return; } if (opcode == T_MNEM_cmp) { constraint (Rn == REG_PC, BAD_PC); if (narrow) { /* In the Thumb-2 ISA, use of R13 as Rm is deprecated, but valid. */ warn_deprecated_sp (Rm); /* R15 was documented as a valid choice for Rm in ARMv6, but as UNPREDICTABLE in ARMv7. ARM's proprietary tools reject R15, so we do too. */ constraint (Rm == REG_PC, BAD_PC); } else reject_bad_reg (Rm); } else if (opcode == T_MNEM_mov || opcode == T_MNEM_movs) { if (inst.operands[1].isreg) { if (opcode == T_MNEM_movs) { reject_bad_reg (Rn); reject_bad_reg (Rm); } else if (narrow) { /* This is mov.n. */ if ((Rn == REG_SP || Rn == REG_PC) && (Rm == REG_SP || Rm == REG_PC)) { as_tsktsk (_("Use of r%u as a source register is " "deprecated when r%u is the destination " "register."), Rm, Rn); } } else { /* This is mov.w. */ constraint (Rn == REG_PC, BAD_PC); constraint (Rm == REG_PC, BAD_PC); if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP); } } else reject_bad_reg (Rn); } if (!inst.operands[1].isreg) { /* Immediate operand. */ if (!in_pred_block () && opcode == T_MNEM_mov) narrow = 0; if (low_regs && narrow) { inst.instruction = THUMB_OP16 (opcode); inst.instruction |= Rn << 8; if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) { if (inst.size_req == 2) inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM; else inst.relax = opcode; } } else { constraint ((inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC) && (inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) , THUMB1_RELOC_ONLY); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rn << r0off; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } } else if (inst.operands[1].shifted && inst.operands[1].immisreg && (inst.instruction == T_MNEM_mov || inst.instruction == T_MNEM_movs)) { /* Register shifts are encoded as separate shift instructions. */ bool flags = (inst.instruction == T_MNEM_movs); if (in_pred_block ()) narrow = !flags; else narrow = flags; if (inst.size_req == 4) narrow = false; if (!low_regs || inst.operands[1].imm > 7) narrow = false; if (Rn != Rm) narrow = false; switch (inst.operands[1].shift_kind) { case SHIFT_LSL: opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl); break; case SHIFT_ASR: opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr); break; case SHIFT_LSR: opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr); break; case SHIFT_ROR: opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror); break; default: abort (); } inst.instruction = opcode; if (narrow) { inst.instruction |= Rn; inst.instruction |= inst.operands[1].imm << 3; } else { if (flags) inst.instruction |= CONDS_BIT; inst.instruction |= Rn << 8; inst.instruction |= Rm << 16; inst.instruction |= inst.operands[1].imm; } } else if (!narrow) { /* Some mov with immediate shift have narrow variants. Register shifts are handled above. */ if (low_regs && inst.operands[1].shifted && (inst.instruction == T_MNEM_mov || inst.instruction == T_MNEM_movs)) { if (in_pred_block ()) narrow = (inst.instruction == T_MNEM_mov); else narrow = (inst.instruction == T_MNEM_movs); } if (narrow) { switch (inst.operands[1].shift_kind) { case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break; case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break; case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break; default: narrow = false; break; } } if (narrow) { inst.instruction |= Rn; inst.instruction |= Rm << 3; inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT; } else { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rn << r0off; encode_thumb32_shifted_operand (1); } } else switch (inst.instruction) { case T_MNEM_mov: /* In v4t or v5t a move of two lowregs produces unpredictable results. Don't allow this. */ if (low_regs) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6), "MOV Rd, Rs with two low registers is not " "permitted on this architecture"); ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_v6); } inst.instruction = T_OPCODE_MOV_HR; inst.instruction |= (Rn & 0x8) << 4; inst.instruction |= (Rn & 0x7); inst.instruction |= Rm << 3; break; case T_MNEM_movs: /* We know we have low registers at this point. Generate LSLS Rd, Rs, #0. */ inst.instruction = T_OPCODE_LSL_I; inst.instruction |= Rn; inst.instruction |= Rm << 3; break; case T_MNEM_cmp: if (low_regs) { inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= Rn; inst.instruction |= Rm << 3; } else { inst.instruction = T_OPCODE_CMP_HR; inst.instruction |= (Rn & 0x8) << 4; inst.instruction |= (Rn & 0x7); inst.instruction |= Rm << 3; } break; } return; } inst.instruction = THUMB_OP16 (inst.instruction); /* PR 10443: Do not silently ignore shifted operands. */ constraint (inst.operands[1].shifted, _("shifts in CMP/MOV instructions are only supported in unified syntax")); if (inst.operands[1].isreg) { if (Rn < 8 && Rm < 8) { /* A move of two lowregs is encoded as ADD Rd, Rs, #0 since a MOV instruction produces unpredictable results. */ if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_ADD_I3; else inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= Rn; inst.instruction |= Rm << 3; } else { if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_MOV_HR; else inst.instruction = T_OPCODE_CMP_HR; do_t_cpy (); } } else { constraint (Rn > 7, _("only lo regs allowed with immediate")); inst.instruction |= Rn << 8; inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM; } } static void do_t_mov16 (void) { unsigned Rd; bfd_vma imm; bool top; top = (inst.instruction & 0x00800000) != 0; if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW) { constraint (top, _(":lower16: not allowed in this instruction")); inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW; } else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT) { constraint (!top, _(":upper16: not allowed in this instruction")); inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT; } Rd = inst.operands[0].reg; reject_bad_reg (Rd); inst.instruction |= Rd << 8; if (inst.relocs[0].type == BFD_RELOC_UNUSED) { imm = inst.relocs[0].exp.X_add_number; inst.instruction |= (imm & 0xf000) << 4; inst.instruction |= (imm & 0x0800) << 15; inst.instruction |= (imm & 0x0700) << 4; inst.instruction |= (imm & 0x00ff); } } static void do_t_mvn_tst (void) { unsigned Rn, Rm; Rn = inst.operands[0].reg; Rm = inst.operands[1].reg; if (inst.instruction == T_MNEM_cmp || inst.instruction == T_MNEM_cmn) constraint (Rn == REG_PC, BAD_PC); else reject_bad_reg (Rn); reject_bad_reg (Rm); if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mvn || inst.instruction == T_MNEM_mvns) ? 8 : 16; bool narrow; if (inst.size_req == 4 || inst.instruction > 0xffff || inst.operands[1].shifted || Rn > 7 || Rm > 7) narrow = false; else if (inst.instruction == T_MNEM_cmn || inst.instruction == T_MNEM_tst) narrow = true; else if (THUMB_SETS_FLAGS (inst.instruction)) narrow = !in_pred_block (); else narrow = in_pred_block (); if (!inst.operands[1].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rn << r0off; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { /* See if we can do this with a 16-bit instruction. */ if (narrow) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rn; inst.instruction |= Rm << 3; } else { constraint (inst.operands[1].shifted && inst.operands[1].immisreg, _("shift must be constant")); if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rn << r0off; encode_thumb32_shifted_operand (1); } } } else { constraint (inst.instruction > 0xffff || inst.instruction == T_MNEM_mvns, BAD_THUMB32); constraint (!inst.operands[1].isreg || inst.operands[1].shifted, _("unshifted register required")); constraint (Rn > 7 || Rm > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rn; inst.instruction |= Rm << 3; } } static void do_t_mrs (void) { unsigned Rd; if (do_vfp_nsyn_mrs () == SUCCESS) return; Rd = inst.operands[0].reg; reject_bad_reg (Rd); inst.instruction |= Rd << 8; if (inst.operands[1].isreg) { unsigned br = inst.operands[1].reg; if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000)) as_bad (_("bad register for mrs")); inst.instruction |= br & (0xf << 16); inst.instruction |= (br & 0x300) >> 4; inst.instruction |= (br & SPSR_BIT) >> 2; } else { int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT); if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)) { /* PR gas/12698: The constraint is only applied for m_profile. If the user has specified -march=all, we want to ignore it as we are building for any CPU type, including non-m variants. */ bool m_profile = !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any); constraint ((flags != 0) && m_profile, _("selected processor does " "not support requested special purpose register")); } else /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile devices). */ constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f), _("'APSR', 'CPSR' or 'SPSR' expected")); inst.instruction |= (flags & SPSR_BIT) >> 2; inst.instruction |= inst.operands[1].imm & 0xff; inst.instruction |= 0xf0000; } } static void do_t_msr (void) { int flags; unsigned Rn; if (do_vfp_nsyn_msr () == SUCCESS) return; constraint (!inst.operands[1].isreg, _("Thumb encoding does not support an immediate here")); if (inst.operands[0].isreg) flags = (int)(inst.operands[0].reg); else flags = inst.operands[0].imm; if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m)) { int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT); /* PR gas/12698: The constraint is only applied for m_profile. If the user has specified -march=all, we want to ignore it as we are building for any CPU type, including non-m variants. */ bool m_profile = !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any); constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp) && (bits & ~(PSR_s | PSR_f)) != 0) || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp) && bits != PSR_f)) && m_profile, _("selected processor does not support requested special " "purpose register")); } else constraint ((flags & 0xff) != 0, _("selected processor does not support " "requested special purpose register")); Rn = inst.operands[1].reg; reject_bad_reg (Rn); inst.instruction |= (flags & SPSR_BIT) >> 2; inst.instruction |= (flags & 0xf0000) >> 8; inst.instruction |= (flags & 0x300) >> 4; inst.instruction |= (flags & 0xff); inst.instruction |= Rn << 16; } static void do_t_mul (void) { bool narrow; unsigned Rd, Rn, Rm; if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; if (unified_syntax) { if (inst.size_req == 4 || (Rd != Rn && Rd != Rm) || Rn > 7 || Rm > 7) narrow = false; else if (inst.instruction == T_MNEM_muls) narrow = !in_pred_block (); else narrow = in_pred_block (); } else { constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32); constraint (Rn > 7 || Rm > 7, BAD_HIREG); narrow = true; } if (narrow) { /* 16-bit MULS/Conditional MUL. */ inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; if (Rd == Rn) inst.instruction |= Rm << 3; else if (Rd == Rm) inst.instruction |= Rn << 3; else constraint (1, _("dest must overlap one source register")); } else { constraint (inst.instruction != T_MNEM_mul, _("Thumb-2 MUL must not set flags")); /* 32-bit MUL. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm << 0; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); } } static void do_t_mull (void) { unsigned RdLo, RdHi, Rn, Rm; RdLo = inst.operands[0].reg; RdHi = inst.operands[1].reg; Rn = inst.operands[2].reg; Rm = inst.operands[3].reg; reject_bad_reg (RdLo); reject_bad_reg (RdHi); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= RdLo << 12; inst.instruction |= RdHi << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; if (RdLo == RdHi) as_tsktsk (_("rdhi and rdlo must be different")); } static void do_t_nop (void) { set_pred_insn_type (NEUTRAL_IT_INSN); if (unified_syntax) { if (inst.size_req == 4 || inst.operands[0].imm > 15) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].imm; } else { /* PR9722: Check for Thumb2 availability before generating a thumb2 nop instruction. */ if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].imm << 4; } else inst.instruction = 0x46c0; } } else { constraint (inst.operands[0].present, _("Thumb does not support NOP with hints")); inst.instruction = 0x46c0; } } static void do_t_neg (void) { if (unified_syntax) { bool narrow; if (THUMB_SETS_FLAGS (inst.instruction)) narrow = !in_pred_block (); else narrow = in_pred_block (); if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7) narrow = false; if (inst.size_req == 4) narrow = false; if (!narrow) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_orn (void) { unsigned Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[1].present ? inst.operands[1].reg : Rd; reject_bad_reg (Rd); /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */ reject_bad_reg (Rn); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; if (!inst.operands[2].isreg) { inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { unsigned Rm; Rm = inst.operands[2].reg; reject_bad_reg (Rm); constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); encode_thumb32_shifted_operand (2); } } static void do_t_pkhbt (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; if (inst.operands[3].present) { unsigned int val = inst.relocs[0].exp.X_add_number; constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); inst.instruction |= (val & 0x1c) << 10; inst.instruction |= (val & 0x03) << 6; } } static void do_t_pkhtb (void) { if (!inst.operands[3].present) { unsigned Rtmp; inst.instruction &= ~0x00000020; /* PR 10168. Swap the Rm and Rn registers. */ Rtmp = inst.operands[1].reg; inst.operands[1].reg = inst.operands[2].reg; inst.operands[2].reg = Rtmp; } do_t_pkhbt (); } static void do_t_pld (void) { if (inst.operands[0].immisreg) reject_bad_reg (inst.operands[0].imm); encode_thumb32_addr_mode (0, /*is_t=*/false, /*is_d=*/false); } static void do_t_push_pop (void) { unsigned mask; constraint (inst.operands[0].writeback, _("push/pop do not support {reglist}^")); constraint (inst.relocs[0].type != BFD_RELOC_UNUSED, _("expression too complex")); mask = inst.operands[0].imm; if (inst.size_req != 4 && (mask & ~0xff) == 0) inst.instruction = THUMB_OP16 (inst.instruction) | mask; else if (inst.size_req != 4 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push ? REG_LR : REG_PC))) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= THUMB_PP_PC_LR; inst.instruction |= mask & 0xff; } else if (unified_syntax) { inst.instruction = THUMB_OP32 (inst.instruction); encode_thumb2_multi (true /* do_io */, 13, mask, true); } else { inst.error = _("invalid register list to push/pop instruction"); return; } } static void do_t_clrm (void) { if (unified_syntax) encode_thumb2_multi (false /* do_io */, -1, inst.operands[0].imm, false); else { inst.error = _("invalid register list to push/pop instruction"); return; } } static void do_t_vscclrm (void) { if (inst.operands[0].issingle) { inst.instruction |= (inst.operands[0].reg & 0x1) << 22; inst.instruction |= (inst.operands[0].reg & 0x1e) << 11; inst.instruction |= inst.operands[0].imm; } else { inst.instruction |= (inst.operands[0].reg & 0x10) << 18; inst.instruction |= (inst.operands[0].reg & 0xf) << 12; inst.instruction |= 1 << 8; inst.instruction |= inst.operands[0].imm << 1; } } static void do_t_rbit (void) { unsigned Rd, Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rm << 16; inst.instruction |= Rm; } static void do_t_rev (void) { unsigned Rd, Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rm); if (Rd <= 7 && Rm <= 7 && inst.size_req != 4) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rm << 3; } else if (unified_syntax) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rm << 16; inst.instruction |= Rm; } else inst.error = BAD_HIREG; } static void do_t_rrx (void) { unsigned Rd, Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rm; } static void do_t_rsb (void) { unsigned Rd, Rs; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ reject_bad_reg (Rd); reject_bad_reg (Rs); if (inst.operands[2].isreg) reject_bad_reg (inst.operands[2].reg); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; if (!inst.operands[2].isreg) { bool narrow; if ((inst.instruction & 0x00100000) != 0) narrow = !in_pred_block (); else narrow = in_pred_block (); if (Rd > 7 || Rs > 7) narrow = false; if (inst.size_req == 4 || !unified_syntax) narrow = false; if (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0) narrow = false; /* Turn rsb #0 into 16-bit neg. We should probably do this via relaxation, but it doesn't seem worth the hassle. */ if (narrow) { inst.relocs[0].type = BFD_RELOC_UNUSED; inst.instruction = THUMB_OP16 (T_MNEM_negs); inst.instruction |= Rs << 3; inst.instruction |= Rd; } else { inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE; } } else encode_thumb32_shifted_operand (2); } static void do_t_setend (void) { if (warn_on_deprecated && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) as_tsktsk (_("setend use is deprecated for ARMv8")); set_pred_insn_type (OUTSIDE_PRED_INSN); if (inst.operands[0].imm) inst.instruction |= 0x8; } static void do_t_shift (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; if (unified_syntax) { bool narrow; int shift_kind; switch (inst.instruction) { case T_MNEM_asr: case T_MNEM_asrs: shift_kind = SHIFT_ASR; break; case T_MNEM_lsl: case T_MNEM_lsls: shift_kind = SHIFT_LSL; break; case T_MNEM_lsr: case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break; case T_MNEM_ror: case T_MNEM_rors: shift_kind = SHIFT_ROR; break; default: abort (); } if (THUMB_SETS_FLAGS (inst.instruction)) narrow = !in_pred_block (); else narrow = in_pred_block (); if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7) narrow = false; if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR) narrow = false; if (inst.operands[2].isreg && (inst.operands[1].reg != inst.operands[0].reg || inst.operands[2].reg > 7)) narrow = false; if (inst.size_req == 4) narrow = false; reject_bad_reg (inst.operands[0].reg); reject_bad_reg (inst.operands[1].reg); if (!narrow) { if (inst.operands[2].isreg) { reject_bad_reg (inst.operands[2].reg); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; /* PR 12854: Error on extraneous shifts. */ constraint (inst.operands[2].shifted, _("extraneous shift as part of operand to shift insn")); } else { inst.operands[1].shifted = 1; inst.operands[1].shift_kind = shift_kind; inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction) ? T_MNEM_movs : T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; encode_thumb32_shifted_operand (1); /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */ inst.relocs[0].type = BFD_RELOC_UNUSED; } } else { if (inst.operands[2].isreg) { switch (shift_kind) { case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break; case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break; case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break; case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; /* PR 12854: Error on extraneous shifts. */ constraint (inst.operands[2].shifted, _("extraneous shift as part of operand to shift insn")); } else { switch (shift_kind) { case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break; case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break; case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break; default: abort (); } inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */ { constraint (inst.operands[2].reg > 7, BAD_HIREG); constraint (inst.operands[0].reg != inst.operands[1].reg, _("source1 and dest must be same register")); switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break; case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; /* PR 12854: Error on extraneous shifts. */ constraint (inst.operands[2].shifted, _("extraneous shift as part of operand to shift insn")); } else { switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break; case T_MNEM_ror: inst.error = _("ror #imm not supported"); return; default: abort (); } inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } static void do_t_simd (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; } static void do_t_simd2 (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; } static void do_t_smc (void) { unsigned int value = inst.relocs[0].exp.X_add_number; constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a), _("SMC is not permitted on this architecture")); constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); constraint (value > 0xf, _("immediate too large (bigger than 0xF)")); inst.relocs[0].type = BFD_RELOC_UNUSED; inst.instruction |= (value & 0x000f) << 16; /* PR gas/15623: SMC instructions must be last in an IT block. */ set_pred_insn_type_last (); } static void do_t_hvc (void) { unsigned int value = inst.relocs[0].exp.X_add_number; inst.relocs[0].type = BFD_RELOC_UNUSED; inst.instruction |= (value & 0x0fff); inst.instruction |= (value & 0xf000) << 4; } static void do_t_ssat_usat (int bias) { unsigned Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); inst.instruction |= Rd << 8; inst.instruction |= inst.operands[1].imm - bias; inst.instruction |= Rn << 16; if (inst.operands[3].present) { offsetT shift_amount = inst.relocs[0].exp.X_add_number; inst.relocs[0].type = BFD_RELOC_UNUSED; constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); if (shift_amount != 0) { constraint (shift_amount > 31, _("shift expression is too large")); if (inst.operands[3].shift_kind == SHIFT_ASR) inst.instruction |= 0x00200000; /* sh bit. */ inst.instruction |= (shift_amount & 0x1c) << 10; inst.instruction |= (shift_amount & 0x03) << 6; } } } static void do_t_ssat (void) { do_t_ssat_usat (1); } static void do_t_ssat16 (void) { unsigned Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); inst.instruction |= Rd << 8; inst.instruction |= inst.operands[1].imm - 1; inst.instruction |= Rn << 16; } static void do_t_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative, BAD_ADDR_MODE); constraint (inst.operands[2].reg == REG_PC, BAD_PC); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_strexd (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[1].reg + 1; constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg || inst.operands[0].reg == inst.operands[3].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 16; } static void do_t_sxtah (void) { unsigned Rd, Rn, Rm; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; Rm = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); reject_bad_reg (Rm); inst.instruction |= Rd << 8; inst.instruction |= Rn << 16; inst.instruction |= Rm; inst.instruction |= inst.operands[3].imm << 4; } static void do_t_sxth (void) { unsigned Rd, Rm; Rd = inst.operands[0].reg; Rm = inst.operands[1].reg; reject_bad_reg (Rd); reject_bad_reg (Rm); if (inst.instruction <= 0xffff && inst.size_req != 4 && Rd <= 7 && Rm <= 7 && (!inst.operands[2].present || inst.operands[2].imm == 0)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rm << 3; } else if (unified_syntax) { if (inst.instruction <= 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rm; inst.instruction |= inst.operands[2].imm << 4; } else { constraint (inst.operands[2].present && inst.operands[2].imm != 0, _("Thumb encoding does not support rotation")); constraint (1, BAD_HIREG); } } static void do_t_swi (void) { inst.relocs[0].type = BFD_RELOC_ARM_SWI; } static void do_t_tb (void) { unsigned Rn, Rm; int half; half = (inst.instruction & 0x10) != 0; set_pred_insn_type_last (); constraint (inst.operands[0].immisreg, _("instruction requires register index")); Rn = inst.operands[0].reg; Rm = inst.operands[0].imm; if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) constraint (Rn == REG_SP, BAD_SP); reject_bad_reg (Rm); constraint (!half && inst.operands[0].shifted, _("instruction does not allow shifted index")); inst.instruction |= (Rn << 16) | Rm; } static void do_t_udf (void) { if (!inst.operands[0].present) inst.operands[0].imm = 0; if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4) { constraint (inst.size_req == 2, _("immediate value out of range")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4; inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].imm; } set_pred_insn_type (NEUTRAL_IT_INSN); } static void do_t_usat (void) { do_t_ssat_usat (0); } static void do_t_usat16 (void) { unsigned Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[2].reg; reject_bad_reg (Rd); reject_bad_reg (Rn); inst.instruction |= Rd << 8; inst.instruction |= inst.operands[1].imm; inst.instruction |= Rn << 16; } /* Checking the range of the branch offset (VAL) with NBITS bits and IS_SIGNED signedness. Also checks the LSB to be 0. */ static int v8_1_branch_value_check (int val, int nbits, int is_signed) { gas_assert (nbits > 0 && nbits <= 32); if (is_signed) { int cmp = (1 << (nbits - 1)); if ((val < -cmp) || (val >= cmp) || (val & 0x01)) return FAIL; } else { if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1)) return FAIL; } return SUCCESS; } /* For branches in Armv8.1-M Mainline. */ static void do_t_branch_future (void) { unsigned long insn = inst.instruction; inst.instruction = THUMB_OP32 (inst.instruction); if (inst.operands[0].hasreloc == 0) { if (v8_1_branch_value_check (inst.operands[0].imm, 5, false) == FAIL) as_bad (BAD_BRANCH_OFF); inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23; } else { inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5; inst.relocs[0].pc_rel = 1; } switch (insn) { case T_MNEM_bf: if (inst.operands[1].hasreloc == 0) { int val = inst.operands[1].imm; if (v8_1_branch_value_check (inst.operands[1].imm, 17, true) == FAIL) as_bad (BAD_BRANCH_OFF); int immA = (val & 0x0001f000) >> 12; int immB = (val & 0x00000ffc) >> 2; int immC = (val & 0x00000002) >> 1; inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11); } else { inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17; inst.relocs[1].pc_rel = 1; } break; case T_MNEM_bfl: if (inst.operands[1].hasreloc == 0) { int val = inst.operands[1].imm; if (v8_1_branch_value_check (inst.operands[1].imm, 19, true) == FAIL) as_bad (BAD_BRANCH_OFF); int immA = (val & 0x0007f000) >> 12; int immB = (val & 0x00000ffc) >> 2; int immC = (val & 0x00000002) >> 1; inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11); } else { inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19; inst.relocs[1].pc_rel = 1; } break; case T_MNEM_bfcsel: /* Operand 1. */ if (inst.operands[1].hasreloc == 0) { int val = inst.operands[1].imm; int immA = (val & 0x00001000) >> 12; int immB = (val & 0x00000ffc) >> 2; int immC = (val & 0x00000002) >> 1; inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11); } else { inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13; inst.relocs[1].pc_rel = 1; } /* Operand 2. */ if (inst.operands[2].hasreloc == 0) { constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS); int val2 = inst.operands[2].imm; int val0 = inst.operands[0].imm & 0x1f; int diff = val2 - val0; if (diff == 4) inst.instruction |= 1 << 17; /* T bit. */ else if (diff != 2) as_bad (_("out of range label-relative fixup value")); } else { constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS); inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL; inst.relocs[2].pc_rel = 1; } /* Operand 3. */ constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction |= (inst.operands[3].imm & 0xf) << 18; break; case T_MNEM_bfx: case T_MNEM_bflx: inst.instruction |= inst.operands[1].reg << 16; break; default: abort (); } } /* Helper function for do_t_loloop to handle relocations. */ static void v8_1_loop_reloc (int is_le) { if (inst.relocs[0].exp.X_op == O_constant) { int value = inst.relocs[0].exp.X_add_number; value = (is_le) ? -value : value; if (v8_1_branch_value_check (value, 12, false) == FAIL) as_bad (BAD_BRANCH_OFF); int imml, immh; immh = (value & 0x00000ffc) >> 2; imml = (value & 0x00000002) >> 1; inst.instruction |= (imml << 11) | (immh << 1); } else { inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12; inst.relocs[0].pc_rel = 1; } } /* For shifts with four operands in MVE. */ static void do_mve_scalar_shift1 (void) { unsigned int value = inst.operands[2].imm; inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 8; /* Setting the bit for saturation. */ inst.instruction |= ((value == 64) ? 0: 1) << 7; /* Assuming Rm is already checked not to be 11x1. */ constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP); constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[3].reg << 12; } /* For shifts in MVE. */ static void do_mve_scalar_shift (void) { if (!inst.operands[2].present) { inst.operands[2] = inst.operands[1]; inst.operands[1].reg = 0xf; } inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 8; if (inst.operands[2].isreg) { /* Assuming Rm is already checked not to be 11x1. */ constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP); constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[2].reg << 12; } else { /* Assuming imm is already checked as [1,32]. */ unsigned int value = inst.operands[2].imm; inst.instruction |= (value & 0x1c) << 10; inst.instruction |= (value & 0x03) << 6; /* Change last 4 bits from 0xd to 0xf. */ inst.instruction |= 0x2; } } /* MVE instruction encoder helpers. */ #define M_MNEM_vabav 0xee800f01 #define M_MNEM_vmladav 0xeef00e00 #define M_MNEM_vmladava 0xeef00e20 #define M_MNEM_vmladavx 0xeef01e00 #define M_MNEM_vmladavax 0xeef01e20 #define M_MNEM_vmlsdav 0xeef00e01 #define M_MNEM_vmlsdava 0xeef00e21 #define M_MNEM_vmlsdavx 0xeef01e01 #define M_MNEM_vmlsdavax 0xeef01e21 #define M_MNEM_vmullt 0xee011e00 #define M_MNEM_vmullb 0xee010e00 #define M_MNEM_vctp 0xf000e801 #define M_MNEM_vst20 0xfc801e00 #define M_MNEM_vst21 0xfc801e20 #define M_MNEM_vst40 0xfc801e01 #define M_MNEM_vst41 0xfc801e21 #define M_MNEM_vst42 0xfc801e41 #define M_MNEM_vst43 0xfc801e61 #define M_MNEM_vld20 0xfc901e00 #define M_MNEM_vld21 0xfc901e20 #define M_MNEM_vld40 0xfc901e01 #define M_MNEM_vld41 0xfc901e21 #define M_MNEM_vld42 0xfc901e41 #define M_MNEM_vld43 0xfc901e61 #define M_MNEM_vstrb 0xec000e00 #define M_MNEM_vstrh 0xec000e10 #define M_MNEM_vstrw 0xec000e40 #define M_MNEM_vstrd 0xec000e50 #define M_MNEM_vldrb 0xec100e00 #define M_MNEM_vldrh 0xec100e10 #define M_MNEM_vldrw 0xec100e40 #define M_MNEM_vldrd 0xec100e50 #define M_MNEM_vmovlt 0xeea01f40 #define M_MNEM_vmovlb 0xeea00f40 #define M_MNEM_vmovnt 0xfe311e81 #define M_MNEM_vmovnb 0xfe310e81 #define M_MNEM_vadc 0xee300f00 #define M_MNEM_vadci 0xee301f00 #define M_MNEM_vbrsr 0xfe011e60 #define M_MNEM_vaddlv 0xee890f00 #define M_MNEM_vaddlva 0xee890f20 #define M_MNEM_vaddv 0xeef10f00 #define M_MNEM_vaddva 0xeef10f20 #define M_MNEM_vddup 0xee011f6e #define M_MNEM_vdwdup 0xee011f60 #define M_MNEM_vidup 0xee010f6e #define M_MNEM_viwdup 0xee010f60 #define M_MNEM_vmaxv 0xeee20f00 #define M_MNEM_vmaxav 0xeee00f00 #define M_MNEM_vminv 0xeee20f80 #define M_MNEM_vminav 0xeee00f80 #define M_MNEM_vmlaldav 0xee800e00 #define M_MNEM_vmlaldava 0xee800e20 #define M_MNEM_vmlaldavx 0xee801e00 #define M_MNEM_vmlaldavax 0xee801e20 #define M_MNEM_vmlsldav 0xee800e01 #define M_MNEM_vmlsldava 0xee800e21 #define M_MNEM_vmlsldavx 0xee801e01 #define M_MNEM_vmlsldavax 0xee801e21 #define M_MNEM_vrmlaldavhx 0xee801f00 #define M_MNEM_vrmlaldavhax 0xee801f20 #define M_MNEM_vrmlsldavh 0xfe800e01 #define M_MNEM_vrmlsldavha 0xfe800e21 #define M_MNEM_vrmlsldavhx 0xfe801e01 #define M_MNEM_vrmlsldavhax 0xfe801e21 #define M_MNEM_vqmovnt 0xee331e01 #define M_MNEM_vqmovnb 0xee330e01 #define M_MNEM_vqmovunt 0xee311e81 #define M_MNEM_vqmovunb 0xee310e81 #define M_MNEM_vshrnt 0xee801fc1 #define M_MNEM_vshrnb 0xee800fc1 #define M_MNEM_vrshrnt 0xfe801fc1 #define M_MNEM_vqshrnt 0xee801f40 #define M_MNEM_vqshrnb 0xee800f40 #define M_MNEM_vqshrunt 0xee801fc0 #define M_MNEM_vqshrunb 0xee800fc0 #define M_MNEM_vrshrnb 0xfe800fc1 #define M_MNEM_vqrshrnt 0xee801f41 #define M_MNEM_vqrshrnb 0xee800f41 #define M_MNEM_vqrshrunt 0xfe801fc0 #define M_MNEM_vqrshrunb 0xfe800fc0 /* Bfloat16 instruction encoder helpers. */ #define B_MNEM_vfmat 0xfc300850 #define B_MNEM_vfmab 0xfc300810 /* Neon instruction encoder helpers. */ /* Encodings for the different types for various Neon opcodes. */ /* An "invalid" code for the following tables. */ #define N_INV -1u struct neon_tab_entry { unsigned integer; unsigned float_or_poly; unsigned scalar_or_imm; }; /* Map overloaded Neon opcodes to their respective encodings. */ #define NEON_ENC_TAB \ X(vabd, 0x0000700, 0x1200d00, N_INV), \ X(vabdl, 0x0800700, N_INV, N_INV), \ X(vmax, 0x0000600, 0x0000f00, N_INV), \ X(vmin, 0x0000610, 0x0200f00, N_INV), \ X(vpadd, 0x0000b10, 0x1000d00, N_INV), \ X(vpmax, 0x0000a00, 0x1000f00, N_INV), \ X(vpmin, 0x0000a10, 0x1200f00, N_INV), \ X(vadd, 0x0000800, 0x0000d00, N_INV), \ X(vaddl, 0x0800000, N_INV, N_INV), \ X(vsub, 0x1000800, 0x0200d00, N_INV), \ X(vsubl, 0x0800200, N_INV, N_INV), \ X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \ X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \ X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \ /* Register variants of the following two instructions are encoded as vcge / vcgt with the operands reversed. */ \ X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \ X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \ X(vfma, N_INV, 0x0000c10, N_INV), \ X(vfms, N_INV, 0x0200c10, N_INV), \ X(vmla, 0x0000900, 0x0000d10, 0x0800040), \ X(vmls, 0x1000900, 0x0200d10, 0x0800440), \ X(vmul, 0x0000910, 0x1000d10, 0x0800840), \ X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \ X(vmlal, 0x0800800, N_INV, 0x0800240), \ X(vmlsl, 0x0800a00, N_INV, 0x0800640), \ X(vqdmlal, 0x0800900, N_INV, 0x0800340), \ X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \ X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \ X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \ X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \ X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \ X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \ X(vshl, 0x0000400, N_INV, 0x0800510), \ X(vqshl, 0x0000410, N_INV, 0x0800710), \ X(vand, 0x0000110, N_INV, 0x0800030), \ X(vbic, 0x0100110, N_INV, 0x0800030), \ X(veor, 0x1000110, N_INV, N_INV), \ X(vorn, 0x0300110, N_INV, 0x0800010), \ X(vorr, 0x0200110, N_INV, 0x0800010), \ X(vmvn, 0x1b00580, N_INV, 0x0800030), \ X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \ X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \ X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \ X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \ X(vst1, 0x0000000, 0x0800000, N_INV), \ X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \ X(vst2, 0x0000100, 0x0800100, N_INV), \ X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \ X(vst3, 0x0000200, 0x0800200, N_INV), \ X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \ X(vst4, 0x0000300, 0x0800300, N_INV), \ X(vmovn, 0x1b20200, N_INV, N_INV), \ X(vtrn, 0x1b20080, N_INV, N_INV), \ X(vqmovn, 0x1b20200, N_INV, N_INV), \ X(vqmovun, 0x1b20240, N_INV, N_INV), \ X(vnmul, 0xe200a40, 0xe200b40, N_INV), \ X(vnmla, 0xe100a40, 0xe100b40, N_INV), \ X(vnmls, 0xe100a00, 0xe100b00, N_INV), \ X(vfnma, 0xe900a40, 0xe900b40, N_INV), \ X(vfnms, 0xe900a00, 0xe900b00, N_INV), \ X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \ X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \ X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \ X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \ X(vseleq, 0xe000a00, N_INV, N_INV), \ X(vselvs, 0xe100a00, N_INV, N_INV), \ X(vselge, 0xe200a00, N_INV, N_INV), \ X(vselgt, 0xe300a00, N_INV, N_INV), \ X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \ X(vminnm, 0xe800a40, 0x3200f10, N_INV), \ X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \ X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \ X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \ X(aes, 0x3b00300, N_INV, N_INV), \ X(sha3op, 0x2000c00, N_INV, N_INV), \ X(sha1h, 0x3b902c0, N_INV, N_INV), \ X(sha2op, 0x3ba0380, N_INV, N_INV) enum neon_opc { #define X(OPC,I,F,S) N_MNEM_##OPC NEON_ENC_TAB #undef X }; static const struct neon_tab_entry neon_enc_tab[] = { #define X(OPC,I,F,S) { (I), (F), (S) } NEON_ENC_TAB #undef X }; /* Do not use these macros; instead, use NEON_ENCODE defined below. */ #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_SINGLE_(X) \ ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000)) #define NEON_ENC_DOUBLE_(X) \ ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000)) #define NEON_ENC_FPV8_(X) \ ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000)) #define NEON_ENCODE(type, inst) \ do \ { \ inst.instruction = NEON_ENC_##type##_ (inst.instruction); \ inst.is_neon = 1; \ } \ while (0) #define check_neon_suffixes \ do \ { \ if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \ { \ as_bad (_("invalid neon suffix for non neon instruction")); \ return; \ } \ } \ while (0) /* Define shapes for instruction operands. The following mnemonic characters are used in this table: F - VFP S register D - Neon D register Q - Neon Q register I - Immediate S - Scalar R - ARM register L - D register list This table is used to generate various data: - enumerations of the form NS_DDR to be used as arguments to neon_select_shape. - a table classifying shapes into single, double, quad, mixed. - a table used to drive neon_select_shape. */ #define NEON_SHAPE_DEF \ X(4, (R, R, Q, Q), QUAD), \ X(4, (Q, R, R, I), QUAD), \ X(4, (R, R, S, S), QUAD), \ X(4, (S, S, R, R), QUAD), \ X(3, (Q, R, I), QUAD), \ X(3, (I, Q, Q), QUAD), \ X(3, (I, Q, R), QUAD), \ X(3, (R, Q, Q), QUAD), \ X(3, (D, D, D), DOUBLE), \ X(3, (Q, Q, Q), QUAD), \ X(3, (D, D, I), DOUBLE), \ X(3, (Q, Q, I), QUAD), \ X(3, (D, D, S), DOUBLE), \ X(3, (Q, Q, S), QUAD), \ X(3, (Q, Q, R), QUAD), \ X(3, (R, R, Q), QUAD), \ X(2, (R, Q), QUAD), \ X(2, (D, D), DOUBLE), \ X(2, (Q, Q), QUAD), \ X(2, (D, S), DOUBLE), \ X(2, (Q, S), QUAD), \ X(2, (D, R), DOUBLE), \ X(2, (Q, R), QUAD), \ X(2, (D, I), DOUBLE), \ X(2, (Q, I), QUAD), \ X(3, (P, F, I), SINGLE), \ X(3, (P, D, I), DOUBLE), \ X(3, (P, Q, I), QUAD), \ X(4, (P, F, F, I), SINGLE), \ X(4, (P, D, D, I), DOUBLE), \ X(4, (P, Q, Q, I), QUAD), \ X(5, (P, F, F, F, I), SINGLE), \ X(5, (P, D, D, D, I), DOUBLE), \ X(5, (P, Q, Q, Q, I), QUAD), \ X(3, (D, L, D), DOUBLE), \ X(2, (D, Q), MIXED), \ X(2, (Q, D), MIXED), \ X(3, (D, Q, I), MIXED), \ X(3, (Q, D, I), MIXED), \ X(3, (Q, D, D), MIXED), \ X(3, (D, Q, Q), MIXED), \ X(3, (Q, Q, D), MIXED), \ X(3, (Q, D, S), MIXED), \ X(3, (D, Q, S), MIXED), \ X(4, (D, D, D, I), DOUBLE), \ X(4, (Q, Q, Q, I), QUAD), \ X(4, (D, D, S, I), DOUBLE), \ X(4, (Q, Q, S, I), QUAD), \ X(2, (F, F), SINGLE), \ X(3, (F, F, F), SINGLE), \ X(2, (F, I), SINGLE), \ X(2, (F, D), MIXED), \ X(2, (D, F), MIXED), \ X(3, (F, F, I), MIXED), \ X(4, (R, R, F, F), SINGLE), \ X(4, (F, F, R, R), SINGLE), \ X(3, (D, R, R), DOUBLE), \ X(3, (R, R, D), DOUBLE), \ X(2, (S, R), SINGLE), \ X(2, (R, S), SINGLE), \ X(2, (F, R), SINGLE), \ X(2, (R, F), SINGLE), \ /* Used for MVE tail predicated loop instructions. */\ X(2, (R, R), QUAD), \ /* Half float shape supported so far. */\ X (2, (H, D), MIXED), \ X (2, (D, H), MIXED), \ X (2, (H, F), MIXED), \ X (2, (F, H), MIXED), \ X (2, (H, H), HALF), \ X (2, (H, R), HALF), \ X (2, (R, H), HALF), \ X (2, (H, I), HALF), \ X (3, (H, H, H), HALF), \ X (3, (H, F, I), MIXED), \ X (3, (F, H, I), MIXED), \ X (3, (D, H, H), MIXED), \ X (3, (D, H, S), MIXED) #define S2(A,B) NS_##A##B #define S3(A,B,C) NS_##A##B##C #define S4(A,B,C,D) NS_##A##B##C##D #define S5(A,B,C,D,E) NS_##A##B##C##D##E #define X(N, L, C) S##N L enum neon_shape { NEON_SHAPE_DEF, NS_NULL }; #undef X #undef S2 #undef S3 #undef S4 #undef S5 enum neon_shape_class { SC_HALF, SC_SINGLE, SC_DOUBLE, SC_QUAD, SC_MIXED }; #define X(N, L, C) SC_##C static enum neon_shape_class neon_shape_class[] = { NEON_SHAPE_DEF }; #undef X enum neon_shape_el { SE_H, SE_F, SE_D, SE_Q, SE_I, SE_S, SE_R, SE_L, SE_P }; /* Register widths of above. */ static unsigned neon_shape_el_size[] = { 16, 32, 64, 128, 0, 32, 32, 0, 0 }; struct neon_shape_info { unsigned els; enum neon_shape_el el[NEON_MAX_TYPE_ELS]; }; #define S2(A,B) { SE_##A, SE_##B } #define S3(A,B,C) { SE_##A, SE_##B, SE_##C } #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D } #define S5(A,B,C,D,E) { SE_##A, SE_##B, SE_##C, SE_##D, SE_##E } #define X(N, L, C) { N, S##N L } static struct neon_shape_info neon_shape_tab[] = { NEON_SHAPE_DEF }; #undef X #undef S2 #undef S3 #undef S4 #undef S5 /* Bit masks used in type checking given instructions. 'N_EQK' means the type must be the same as (or based on in some way) the key type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is set, various other bits can be set as well in order to modify the meaning of the type constraint. */ enum neon_type_mask { N_S8 = 0x0000001, N_S16 = 0x0000002, N_S32 = 0x0000004, N_S64 = 0x0000008, N_U8 = 0x0000010, N_U16 = 0x0000020, N_U32 = 0x0000040, N_U64 = 0x0000080, N_I8 = 0x0000100, N_I16 = 0x0000200, N_I32 = 0x0000400, N_I64 = 0x0000800, N_8 = 0x0001000, N_16 = 0x0002000, N_32 = 0x0004000, N_64 = 0x0008000, N_P8 = 0x0010000, N_P16 = 0x0020000, N_F16 = 0x0040000, N_F32 = 0x0080000, N_F64 = 0x0100000, N_P64 = 0x0200000, N_BF16 = 0x0400000, N_KEY = 0x1000000, /* Key element (main type specifier). */ N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */ N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */ N_UNT = 0x8000000, /* Must be explicitly untyped. */ N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */ N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */ N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */ N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */ N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */ N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */ N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */ N_UTYP = 0, N_MAX_NONSPECIAL = N_P64 }; #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ) #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64) #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32) #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64) #define N_S_32 (N_S8 | N_S16 | N_S32) #define N_F_16_32 (N_F16 | N_F32) #define N_SUF_32 (N_SU_32 | N_F_16_32) #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64) #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32) #define N_F_ALL (N_F16 | N_F32 | N_F64) #define N_I_MVE (N_I8 | N_I16 | N_I32) #define N_F_MVE (N_F16 | N_F32) #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32) /* Pass this as the first type argument to neon_check_type to ignore types altogether. */ #define N_IGNORE_TYPE (N_KEY | N_EQK) /* Select a "shape" for the current instruction (describing register types or sizes) from a list of alternatives. Return NS_NULL if the current instruction doesn't fit. For non-polymorphic shapes, checking is usually done as a function of operand parsing, so this function doesn't need to be called. Shapes should be listed in order of decreasing length. */ static enum neon_shape neon_select_shape (enum neon_shape shape, ...) { va_list ap; enum neon_shape first_shape = shape; /* Fix missing optional operands. FIXME: we don't know at this point how many arguments we should have, so this makes the assumption that we have > 1. This is true of all current Neon opcodes, I think, but may not be true in the future. */ if (!inst.operands[1].present) inst.operands[1] = inst.operands[0]; va_start (ap, shape); for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int)) { unsigned j; int matches = 1; for (j = 0; j < neon_shape_tab[shape].els; j++) { if (!inst.operands[j].present) { matches = 0; break; } switch (neon_shape_tab[shape].el[j]) { /* If a .f16, .16, .u16, .s16 type specifier is given over a VFP single precision register operand, it's essentially means only half of the register is used. If the type specifier is given after the mnemonics, the information is stored in inst.vectype. If the type specifier is given after register operand, the information is stored in inst.operands[].vectype. When there is only one type specifier, and all the register operands are the same type of hardware register, the type specifier applies to all register operands. If no type specifier is given, the shape is inferred from operand information. for example: vadd.f16 s0, s1, s2: NS_HHH vabs.f16 s0, s1: NS_HH vmov.f16 s0, r1: NS_HR vmov.f16 r0, s1: NS_RH vcvt.f16 r0, s1: NS_RH vcvt.f16.s32 s2, s2, #29: NS_HFI vcvt.f16.s32 s2, s2: NS_HF */ case SE_H: if (!(inst.operands[j].isreg && inst.operands[j].isvec && inst.operands[j].issingle && !inst.operands[j].isquad && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 16) || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 16) || (inst.vectype.elems == 0 && inst.operands[j].vectype.type != NT_invtype && inst.operands[j].vectype.size == 16)))) matches = 0; break; case SE_F: if (!(inst.operands[j].isreg && inst.operands[j].isvec && inst.operands[j].issingle && !inst.operands[j].isquad && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32) || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32) || (inst.vectype.elems == 0 && (inst.operands[j].vectype.size == 32 || inst.operands[j].vectype.type == NT_invtype))))) matches = 0; break; case SE_D: if (!(inst.operands[j].isreg && inst.operands[j].isvec && !inst.operands[j].isquad && !inst.operands[j].issingle)) matches = 0; break; case SE_R: if (!(inst.operands[j].isreg && !inst.operands[j].isvec)) matches = 0; break; case SE_Q: if (!(inst.operands[j].isreg && inst.operands[j].isvec && inst.operands[j].isquad && !inst.operands[j].issingle)) matches = 0; break; case SE_I: if (!(!inst.operands[j].isreg && !inst.operands[j].isscalar)) matches = 0; break; case SE_S: if (!(!inst.operands[j].isreg && inst.operands[j].isscalar)) matches = 0; break; case SE_P: case SE_L: break; } if (!matches) break; } if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present)) /* We've matched all the entries in the shape table, and we don't have any left over operands which have not been matched. */ break; } va_end (ap); if (shape == NS_NULL && first_shape != NS_NULL) first_error (_("invalid instruction shape")); return shape; } /* True if SHAPE is predominantly a quadword operation (most of the time, this means the Q bit should be set). */ static int neon_quad (enum neon_shape shape) { return neon_shape_class[shape] == SC_QUAD; } static void neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type, unsigned *g_size) { /* Allow modification to be made to types which are constrained to be based on the key element, based on bits set alongside N_EQK. */ if ((typebits & N_EQK) != 0) { if ((typebits & N_HLF) != 0) *g_size /= 2; else if ((typebits & N_DBL) != 0) *g_size *= 2; if ((typebits & N_SGN) != 0) *g_type = NT_signed; else if ((typebits & N_UNS) != 0) *g_type = NT_unsigned; else if ((typebits & N_INT) != 0) *g_type = NT_integer; else if ((typebits & N_FLT) != 0) *g_type = NT_float; else if ((typebits & N_SIZ) != 0) *g_type = NT_untyped; } } /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key" operand type, i.e. the single type specified in a Neon instruction when it is the only one given. */ static struct neon_type_el neon_type_promote (struct neon_type_el *key, unsigned thisarg) { struct neon_type_el dest = *key; gas_assert ((thisarg & N_EQK) != 0); neon_modify_type_size (thisarg, &dest.type, &dest.size); return dest; } /* Convert Neon type and size into compact bitmask representation. */ static enum neon_type_mask type_chk_of_el_type (enum neon_el_type type, unsigned size) { switch (type) { case NT_untyped: switch (size) { case 8: return N_8; case 16: return N_16; case 32: return N_32; case 64: return N_64; default: ; } break; case NT_integer: switch (size) { case 8: return N_I8; case 16: return N_I16; case 32: return N_I32; case 64: return N_I64; default: ; } break; case NT_float: switch (size) { case 16: return N_F16; case 32: return N_F32; case 64: return N_F64; default: ; } break; case NT_poly: switch (size) { case 8: return N_P8; case 16: return N_P16; case 64: return N_P64; default: ; } break; case NT_signed: switch (size) { case 8: return N_S8; case 16: return N_S16; case 32: return N_S32; case 64: return N_S64; default: ; } break; case NT_unsigned: switch (size) { case 8: return N_U8; case 16: return N_U16; case 32: return N_U32; case 64: return N_U64; default: ; } break; case NT_bfloat: if (size == 16) return N_BF16; break; default: ; } return N_UTYP; } /* Convert compact Neon bitmask type representation to a type and size. Only handles the case where a single bit is set in the mask. */ static int el_type_of_type_chk (enum neon_el_type *type, unsigned *size, enum neon_type_mask mask) { if ((mask & N_EQK) != 0) return FAIL; if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0) *size = 8; else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16)) != 0) *size = 16; else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0) *size = 32; else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0) *size = 64; else return FAIL; if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0) *type = NT_signed; else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0) *type = NT_unsigned; else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0) *type = NT_integer; else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0) *type = NT_untyped; else if ((mask & (N_P8 | N_P16 | N_P64)) != 0) *type = NT_poly; else if ((mask & (N_F_ALL)) != 0) *type = NT_float; else if ((mask & (N_BF16)) != 0) *type = NT_bfloat; else return FAIL; return SUCCESS; } /* Modify a bitmask of allowed types. This is only needed for type relaxation. */ static unsigned modify_types_allowed (unsigned allowed, unsigned mods) { unsigned size; enum neon_el_type type; unsigned destmask; int i; destmask = 0; for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1) { if (el_type_of_type_chk (&type, &size, (enum neon_type_mask) (allowed & i)) == SUCCESS) { neon_modify_type_size (mods, &type, &size); destmask |= type_chk_of_el_type (type, size); } } return destmask; } /* Check type and return type classification. The manual states (paraphrase): If one datatype is given, it indicates the type given in: - the second operand, if there is one - the operand, if there is no second operand - the result, if there are no operands. This isn't quite good enough though, so we use a concept of a "key" datatype which is set on a per-instruction basis, which is the one which matters when only one data type is written. Note: this function has side-effects (e.g. filling in missing operands). All Neon instructions should call it before performing bit encoding. */ static struct neon_type_el neon_check_type (unsigned els, enum neon_shape ns, ...) { va_list ap; unsigned i, pass, key_el = 0; unsigned types[NEON_MAX_TYPE_ELS]; enum neon_el_type k_type = NT_invtype; unsigned k_size = -1u; struct neon_type_el badtype = {NT_invtype, -1}; unsigned key_allowed = 0; /* Optional registers in Neon instructions are always (not) in operand 1. Fill in the missing operand here, if it was omitted. */ if (els > 1 && !inst.operands[1].present) inst.operands[1] = inst.operands[0]; /* Suck up all the varargs. */ va_start (ap, ns); for (i = 0; i < els; i++) { unsigned thisarg = va_arg (ap, unsigned); if (thisarg == N_IGNORE_TYPE) { va_end (ap); return badtype; } types[i] = thisarg; if ((thisarg & N_KEY) != 0) key_el = i; } va_end (ap); if (inst.vectype.elems > 0) for (i = 0; i < els; i++) if (inst.operands[i].vectype.type != NT_invtype) { first_error (_("types specified in both the mnemonic and operands")); return badtype; } /* Duplicate inst.vectype elements here as necessary. FIXME: No idea if this is exactly the same as the ARM assembler, particularly when an insn takes one register and one non-register operand. */ if (inst.vectype.elems == 1 && els > 1) { unsigned j; inst.vectype.elems = els; inst.vectype.el[key_el] = inst.vectype.el[0]; for (j = 0; j < els; j++) if (j != key_el) inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el], types[j]); } else if (inst.vectype.elems == 0 && els > 0) { unsigned j; /* No types were given after the mnemonic, so look for types specified after each operand. We allow some flexibility here; as long as the "key" operand has a type, we can infer the others. */ for (j = 0; j < els; j++) if (inst.operands[j].vectype.type != NT_invtype) inst.vectype.el[j] = inst.operands[j].vectype; if (inst.operands[key_el].vectype.type != NT_invtype) { for (j = 0; j < els; j++) if (inst.operands[j].vectype.type == NT_invtype) inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el], types[j]); } else { first_error (_("operand types can't be inferred")); return badtype; } } else if (inst.vectype.elems != els) { first_error (_("type specifier has the wrong number of parts")); return badtype; } for (pass = 0; pass < 2; pass++) { for (i = 0; i < els; i++) { unsigned thisarg = types[i]; unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0) ? modify_types_allowed (key_allowed, thisarg) : thisarg; enum neon_el_type g_type = inst.vectype.el[i].type; unsigned g_size = inst.vectype.el[i].size; /* Decay more-specific signed & unsigned types to sign-insensitive integer types if sign-specific variants are unavailable. */ if ((g_type == NT_signed || g_type == NT_unsigned) && (types_allowed & N_SU_ALL) == 0) g_type = NT_integer; /* If only untyped args are allowed, decay any more specific types to them. Some instructions only care about signs for some element sizes, so handle that properly. */ if (((types_allowed & N_UNT) == 0) && ((g_size == 8 && (types_allowed & N_8) != 0) || (g_size == 16 && (types_allowed & N_16) != 0) || (g_size == 32 && (types_allowed & N_32) != 0) || (g_size == 64 && (types_allowed & N_64) != 0))) g_type = NT_untyped; if (pass == 0) { if ((thisarg & N_KEY) != 0) { k_type = g_type; k_size = g_size; key_allowed = thisarg & ~N_KEY; /* Check architecture constraint on FP16 extension. */ if (k_size == 16 && k_type == NT_float && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)) { inst.error = _(BAD_FP16); return badtype; } } } else { if ((thisarg & N_VFP) != 0) { enum neon_shape_el regshape; unsigned regwidth, match; /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */ if (ns == NS_NULL) { first_error (_("invalid instruction shape")); return badtype; } regshape = neon_shape_tab[ns].el[i]; regwidth = neon_shape_el_size[regshape]; /* In VFP mode, operands must match register widths. If we have a key operand, use its width, else use the width of the current operand. */ if (k_size != -1u) match = k_size; else match = g_size; /* FP16 will use a single precision register. */ if (regwidth == 32 && match == 16) { if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)) match = regwidth; else { inst.error = _(BAD_FP16); return badtype; } } if (regwidth != match) { first_error (_("operand size must match register width")); return badtype; } } if ((thisarg & N_EQK) == 0) { unsigned given_type = type_chk_of_el_type (g_type, g_size); if ((given_type & types_allowed) == 0) { first_error (BAD_SIMD_TYPE); return badtype; } } else { enum neon_el_type mod_k_type = k_type; unsigned mod_k_size = k_size; neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size); if (g_type != mod_k_type || g_size != mod_k_size) { first_error (_("inconsistent types in Neon instruction")); return badtype; } } } } } return inst.vectype.el[key_el]; } /* Neon-style VFP instruction forwarding. */ /* Thumb VFP instructions have 0xE in the condition field. */ static void do_vfp_cond_or_thumb (void) { inst.is_neon = 1; if (thumb_mode) inst.instruction |= 0xe0000000; else inst.instruction |= inst.cond << 28; } /* Look up and encode a simple mnemonic, for use as a helper function for the Neon-style VFP syntax. This avoids duplication of bits of the insns table, etc. It is assumed that operand parsing has already been done, and that the operands are in the form expected by the given opcode (this isn't necessarily the same as the form in which they were parsed, hence some massaging must take place before this function is called). Checks current arch version against that in the looked-up opcode. */ static void do_vfp_nsyn_opcode (const char *opname) { const struct asm_opcode *opcode; opcode = (const struct asm_opcode *) str_hash_find (arm_ops_hsh, opname); if (!opcode) abort (); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, thumb_mode ? *opcode->tvariant : *opcode->avariant), _(BAD_FPU)); inst.is_neon = 1; if (thumb_mode) { inst.instruction = opcode->tvalue; opcode->tencode (); } else { inst.instruction = (inst.cond << 28) | opcode->avalue; opcode->aencode (); } } static void do_vfp_nsyn_add_sub (enum neon_shape rs) { int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd; if (rs == NS_FFF || rs == NS_HHH) { if (is_add) do_vfp_nsyn_opcode ("fadds"); else do_vfp_nsyn_opcode ("fsubs"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else { if (is_add) do_vfp_nsyn_opcode ("faddd"); else do_vfp_nsyn_opcode ("fsubd"); } } /* Check operand types to see if this is a VFP instruction, and if so call PFN (). */ static int try_vfp_nsyn (int args, void (*pfn) (enum neon_shape)) { enum neon_shape rs; struct neon_type_el et; switch (args) { case 2: rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL); et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); break; case 3: rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL); et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); break; default: abort (); } if (et.type != NT_invtype) { pfn (rs); return SUCCESS; } inst.error = NULL; return FAIL; } static void do_vfp_nsyn_mla_mls (enum neon_shape rs) { int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla; if (rs == NS_FFF || rs == NS_HHH) { if (is_mla) do_vfp_nsyn_opcode ("fmacs"); else do_vfp_nsyn_opcode ("fnmacs"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else { if (is_mla) do_vfp_nsyn_opcode ("fmacd"); else do_vfp_nsyn_opcode ("fnmacd"); } } static void do_vfp_nsyn_fma_fms (enum neon_shape rs) { int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma; if (rs == NS_FFF || rs == NS_HHH) { if (is_fma) do_vfp_nsyn_opcode ("ffmas"); else do_vfp_nsyn_opcode ("ffnmas"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else { if (is_fma) do_vfp_nsyn_opcode ("ffmad"); else do_vfp_nsyn_opcode ("ffnmad"); } } static void do_vfp_nsyn_mul (enum neon_shape rs) { if (rs == NS_FFF || rs == NS_HHH) { do_vfp_nsyn_opcode ("fmuls"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else do_vfp_nsyn_opcode ("fmuld"); } static void do_vfp_nsyn_abs_neg (enum neon_shape rs) { int is_neg = (inst.instruction & 0x80) != 0; neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY); if (rs == NS_FF || rs == NS_HH) { if (is_neg) do_vfp_nsyn_opcode ("fnegs"); else do_vfp_nsyn_opcode ("fabss"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HH) do_scalar_fp16_v82_encode (); } else { if (is_neg) do_vfp_nsyn_opcode ("fnegd"); else do_vfp_nsyn_opcode ("fabsd"); } } /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision insns belong to Neon, and are handled elsewhere. */ static void do_vfp_nsyn_ldm_stm (int is_dbmode) { int is_ldm = (inst.instruction & (1 << 20)) != 0; if (is_ldm) { if (is_dbmode) do_vfp_nsyn_opcode ("fldmdbs"); else do_vfp_nsyn_opcode ("fldmias"); } else { if (is_dbmode) do_vfp_nsyn_opcode ("fstmdbs"); else do_vfp_nsyn_opcode ("fstmias"); } } static void do_vfp_nsyn_sqrt (void) { enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL); neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); if (rs == NS_FF || rs == NS_HH) { do_vfp_nsyn_opcode ("fsqrts"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HH) do_scalar_fp16_v82_encode (); } else do_vfp_nsyn_opcode ("fsqrtd"); } static void do_vfp_nsyn_div (void) { enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL); neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); if (rs == NS_FFF || rs == NS_HHH) { do_vfp_nsyn_opcode ("fdivs"); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else do_vfp_nsyn_opcode ("fdivd"); } static void do_vfp_nsyn_nmul (void) { enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL); neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); if (rs == NS_FFF || rs == NS_HHH) { NEON_ENCODE (SINGLE, inst); do_vfp_sp_dyadic (); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else { NEON_ENCODE (DOUBLE, inst); do_vfp_dp_rd_rn_rm (); } do_vfp_cond_or_thumb (); } /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3 (0, 1, 2, 3). */ static unsigned neon_logbits (unsigned x) { return ffs (x) - 4; } #define LOW4(R) ((R) & 0xf) #define HI1(R) (((R) >> 4) & 1) #define LOW1(R) ((R) & 0x1) #define HI4(R) (((R) >> 1) & 0xf) static unsigned mve_get_vcmp_vpt_cond (struct neon_type_el et) { switch (et.type) { default: first_error (BAD_EL_TYPE); return 0; case NT_float: switch (inst.operands[0].imm) { default: first_error (_("invalid condition")); return 0; case 0x0: /* eq. */ return 0; case 0x1: /* ne. */ return 1; case 0xa: /* ge/ */ return 4; case 0xb: /* lt. */ return 5; case 0xc: /* gt. */ return 6; case 0xd: /* le. */ return 7; } case NT_integer: /* only accept eq and ne. */ if (inst.operands[0].imm > 1) { first_error (_("invalid condition")); return 0; } return inst.operands[0].imm; case NT_unsigned: if (inst.operands[0].imm == 0x2) return 2; else if (inst.operands[0].imm == 0x8) return 3; else { first_error (_("invalid condition")); return 0; } case NT_signed: switch (inst.operands[0].imm) { default: first_error (_("invalid condition")); return 0; case 0xa: /* ge. */ return 4; case 0xb: /* lt. */ return 5; case 0xc: /* gt. */ return 6; case 0xd: /* le. */ return 7; } } /* Should be unreachable. */ abort (); } /* For VCTP (create vector tail predicate) in MVE. */ static void do_mve_vctp (void) { int dt = 0; unsigned size = 0x0; if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; /* This is a typical MVE instruction which has no type but have size 8, 16, 32 and 64. For instructions with no type, inst.vectype.el[j].type is set to NT_untyped and size is updated in inst.vectype.el[j].size. */ if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped)) dt = inst.vectype.el[0].size; /* Setting this does not indicate an actual NEON instruction, but only indicates that the mnemonic accepts neon-style type suffixes. */ inst.is_neon = 1; switch (dt) { case 8: break; case 16: size = 0x1; break; case 32: size = 0x2; break; case 64: size = 0x3; break; default: first_error (_("Type is not allowed for this instruction")); } inst.instruction |= size << 20; inst.instruction |= inst.operands[0].reg << 16; } static void do_mve_vpt (void) { /* We are dealing with a vector predicated block. */ if (inst.operands[0].present) { enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32, N_EQK); unsigned fcond = mve_get_vcmp_vpt_cond (et); constraint (inst.operands[1].reg > 14, MVE_BAD_QREG); if (et.type == NT_invtype) return; if (et.type == NT_float) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext), BAD_FPU); constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE); inst.instruction |= (et.size == 16) << 28; inst.instruction |= 0x3 << 20; } else { constraint (et.size != 8 && et.size != 16 && et.size != 32, BAD_EL_TYPE); inst.instruction |= 1 << 28; inst.instruction |= neon_logbits (et.size) << 20; } if (inst.operands[2].isquad) { inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= (fcond & 0x2) >> 1; } else { if (inst.operands[2].reg == REG_SP) as_tsktsk (MVE_BAD_SP); inst.instruction |= 1 << 6; inst.instruction |= (fcond & 0x2) << 4; inst.instruction |= inst.operands[2].reg; } inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= (fcond & 0x4) << 10; inst.instruction |= (fcond & 0x1) << 7; } set_pred_insn_type (VPT_INSN); now_pred.cc = 0; now_pred.mask = ((inst.instruction & 0x00400000) >> 19) | ((inst.instruction & 0xe000) >> 13); now_pred.warn_deprecated = false; now_pred.type = VECTOR_PRED; inst.is_neon = 1; } static void do_mve_vcmp (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU); if (!inst.operands[1].isreg || !inst.operands[1].isquad) first_error (_(reg_expected_msgs[REG_TYPE_MQ])); if (!inst.operands[2].present) first_error (_("MVE vector or ARM register expected")); constraint (inst.operands[1].reg > 14, MVE_BAD_QREG); /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */ if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe && inst.operands[1].isquad) { inst.instruction = N_MNEM_vcmp; inst.cond = 0x10; } if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32, N_EQK); constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC && !inst.operands[2].iszr, BAD_PC); unsigned fcond = mve_get_vcmp_vpt_cond (et); inst.instruction = 0xee010f00; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= (fcond & 0x4) << 10; inst.instruction |= (fcond & 0x1) << 7; if (et.type == NT_float) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext), BAD_FPU); inst.instruction |= (et.size == 16) << 28; inst.instruction |= 0x3 << 20; } else { inst.instruction |= 1 << 28; inst.instruction |= neon_logbits (et.size) << 20; } if (inst.operands[2].isquad) { inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= (fcond & 0x2) >> 1; inst.instruction |= LOW4 (inst.operands[2].reg); } else { if (inst.operands[2].reg == REG_SP) as_tsktsk (MVE_BAD_SP); inst.instruction |= 1 << 6; inst.instruction |= (fcond & 0x2) << 4; inst.instruction |= inst.operands[2].reg; } inst.is_neon = 1; return; } static void do_mve_vmaxa_vmina (void) { if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32); inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_logbits (et.size) << 18; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } static void do_mve_vfmas (void) { enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; if (inst.operands[2].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[2].reg == REG_PC) as_tsktsk (MVE_BAD_PC); inst.instruction |= (et.size == 16) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= inst.operands[2].reg; inst.is_neon = 1; } static void do_mve_viddup (void) { if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; unsigned imm = inst.relocs[0].exp.X_add_number; constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8, _("immediate must be either 1, 2, 4 or 8")); enum neon_shape rs; struct neon_type_el et; unsigned Rm; if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup) { rs = neon_select_shape (NS_QRI, NS_NULL); et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK); Rm = 7; } else { constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN); if (inst.operands[2].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[2].reg == REG_PC) first_error (BAD_PC); rs = neon_select_shape (NS_QRRI, NS_NULL); et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK); Rm = inst.operands[2].reg >> 1; } inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_logbits (et.size) << 20; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= (imm > 2) << 7; inst.instruction |= Rm << 1; inst.instruction |= (imm == 2 || imm == 8); inst.is_neon = 1; } static void do_mve_vmlas (void) { enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY); if (inst.operands[2].reg == REG_PC) as_tsktsk (MVE_BAD_PC); else if (inst.operands[2].reg == REG_SP) as_tsktsk (MVE_BAD_SP); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; inst.instruction |= (et.type == NT_unsigned) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_logbits (et.size) << 20; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= inst.operands[2].reg; inst.is_neon = 1; } static void do_mve_vshll (void) { struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; int imm = inst.operands[2].imm; constraint (imm < 1 || (unsigned)imm > et.size, _("immediate value out of range")); if ((unsigned)imm == et.size) { inst.instruction |= neon_logbits (et.size) << 18; inst.instruction |= 0x110001; } else { inst.instruction |= (et.size + imm) << 16; inst.instruction |= 0x800140; } inst.instruction |= (et.type == NT_unsigned) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } static void do_mve_vshlc (void) { if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; if (inst.operands[1].reg == REG_PC) as_tsktsk (MVE_BAD_PC); else if (inst.operands[1].reg == REG_SP) as_tsktsk (MVE_BAD_SP); int imm = inst.operands[2].imm; constraint (imm < 1 || imm > 32, _("immediate value out of range")); inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= (imm & 0x1f) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= inst.operands[1].reg; inst.is_neon = 1; } static void do_mve_vshrn (void) { unsigned types; switch (inst.instruction) { case M_MNEM_vshrnt: case M_MNEM_vshrnb: case M_MNEM_vrshrnt: case M_MNEM_vrshrnb: types = N_I16 | N_I32; break; case M_MNEM_vqshrnt: case M_MNEM_vqshrnb: case M_MNEM_vqrshrnt: case M_MNEM_vqrshrnb: types = N_U16 | N_U32 | N_S16 | N_S32; break; case M_MNEM_vqshrunt: case M_MNEM_vqshrunb: case M_MNEM_vqrshrunt: case M_MNEM_vqrshrunb: types = N_S16 | N_S32; break; default: abort (); } struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; unsigned Qd = inst.operands[0].reg; unsigned Qm = inst.operands[1].reg; unsigned imm = inst.operands[2].imm; constraint (imm < 1 || ((unsigned) imm) > (et.size / 2), et.size == 16 ? _("immediate operand expected in the range [1,8]") : _("immediate operand expected in the range [1,16]")); inst.instruction |= (et.type == NT_unsigned) << 28; inst.instruction |= HI1 (Qd) << 22; inst.instruction |= (et.size - imm) << 16; inst.instruction |= LOW4 (Qd) << 12; inst.instruction |= HI1 (Qm) << 5; inst.instruction |= LOW4 (Qm); inst.is_neon = 1; } static void do_mve_vqmovn (void) { struct neon_type_el et; if (inst.instruction == M_MNEM_vqmovnt || inst.instruction == M_MNEM_vqmovnb) et = neon_check_type (2, NS_QQ, N_EQK, N_U16 | N_U32 | N_S16 | N_S32 | N_KEY); else et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; inst.instruction |= (et.type == NT_unsigned) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= (et.size == 32) << 18; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } static void do_mve_vpsel (void) { neon_select_shape (NS_QQQ, NS_NULL); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= LOW4 (inst.operands[2].reg); inst.is_neon = 1; } static void do_mve_vpnot (void) { if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; } static void do_mve_vmaxnma_vminnma (void) { enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; inst.instruction |= (et.size == 16) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } static void do_mve_vcmul (void) { enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY); if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; unsigned rot = inst.relocs[0].exp.X_add_number; constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270, _("immediate out of range")); if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg)) as_tsktsk (BAD_MVE_SRCDEST); inst.instruction |= (et.size == 32) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= (rot > 90) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= (rot == 90 || rot == 270); inst.is_neon = 1; } /* To handle the Low Overhead Loop instructions in Armv8.1-M Mainline and MVE. */ static void do_t_loloop (void) { unsigned long insn = inst.instruction; inst.instruction = THUMB_OP32 (inst.instruction); if (insn == T_MNEM_lctp) return; set_pred_insn_type (MVE_OUTSIDE_PRED_INSN); if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp) { struct neon_type_el et = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY); inst.instruction |= neon_logbits (et.size) << 20; inst.is_neon = 1; } switch (insn) { case T_MNEM_letp: constraint (!inst.operands[0].present, _("expected LR")); /* fall through. */ case T_MNEM_le: /* le
, , #0 is a synonym for VQMOVN.I
, . */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vqmovn; do_neon_qmovn (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range")); neon_imm_shift (true, et.type == NT_unsigned, 0, et, et.size - imm); } static void do_neon_rshift_sat_narrow_u (void) { /* FIXME: Types for narrowing. If operands are signed, results can be signed or unsigned. If operands are unsigned, results must also be unsigned. */ struct neon_type_el et = neon_check_type (2, NS_DQI, N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY); int imm = inst.operands[2].imm; /* This gets the bounds check, size encoding and immediate bits calculation right. */ et.size /= 2; /* VQSHRUN.I
, , #0 is a synonym for VQMOVUN.I
, . */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vqmovun; do_neon_qmovun (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range")); /* FIXME: The manual is kind of unclear about what value U should have in VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it must be 1. */ neon_imm_shift (true, 1, 0, et, et.size - imm); } static void do_neon_movn (void) { struct neon_type_el et = neon_check_type (2, NS_DQ, N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY); NEON_ENCODE (INTEGER, inst); neon_two_same (0, 1, et.size / 2); } static void do_neon_rshift_narrow (void) { struct neon_type_el et = neon_check_type (2, NS_DQI, N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY); int imm = inst.operands[2].imm; /* This gets the bounds check, size encoding and immediate bits calculation right. */ et.size /= 2; /* If immediate is zero then we are a pseudo-instruction for VMOVN.I
, */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vmovn; do_neon_movn (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range for narrowing operation")); neon_imm_shift (false, 0, 0, et, et.size - imm); } static void do_neon_shll (void) { /* FIXME: Type checking when lengthening. */ struct neon_type_el et = neon_check_type (2, NS_QDI, N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY); unsigned imm = inst.operands[2].imm; if (imm == et.size) { /* Maximum shift variant. */ NEON_ENCODE (INTEGER, inst); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_logbits (et.size) << 18; neon_dp_fixup (&inst); } else { /* A more-specific type check for non-max versions. */ et = neon_check_type (2, NS_QDI, N_EQK | N_DBL, N_SU_32 | N_KEY); NEON_ENCODE (IMMED, inst); neon_imm_shift (true, et.type == NT_unsigned, 0, et, imm); } } /* Check the various types for the VCVT instruction, and return which version the current instruction is. */ #define CVT_FLAVOUR_VAR \ CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \ CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \ CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \ CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \ /* Half-precision conversions. */ \ CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \ CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \ CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \ CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \ CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \ CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \ /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \ Compared with single/double precision variants, only the co-processor \ field is different, so the encoding flow is reused here. */ \ CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \ CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \ CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\ CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\ CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \ /* VFP instructions. */ \ CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \ CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \ CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \ CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \ CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \ CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \ /* VFP instructions with bitshift. */ \ CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \ CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \ CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \ CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \ CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \ CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \ CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \ CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL) #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \ neon_cvt_flavour_##C, /* The different types of conversions we can do. */ enum neon_cvt_flavour { CVT_FLAVOUR_VAR neon_cvt_flavour_invalid, neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64 }; #undef CVT_VAR static enum neon_cvt_flavour get_neon_cvt_flavour (enum neon_shape rs) { #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \ et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \ if (et.type != NT_invtype) \ { \ inst.error = NULL; \ return (neon_cvt_flavour_##C); \ } struct neon_type_el et; unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF || rs == NS_FF) ? N_VFP : 0; /* The instruction versions which take an immediate take one register argument, which is extended to the width of the full register. Thus the "source" and "destination" registers must have the same width. Hack that here by making the size equal to the key (wider, in this case) operand. */ unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0; CVT_FLAVOUR_VAR; return neon_cvt_flavour_invalid; #undef CVT_VAR } enum neon_cvt_mode { neon_cvt_mode_a, neon_cvt_mode_n, neon_cvt_mode_p, neon_cvt_mode_m, neon_cvt_mode_z, neon_cvt_mode_x, neon_cvt_mode_r }; /* Neon-syntax VFP conversions. */ static void do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour) { const char *opname = 0; if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI || rs == NS_FHI || rs == NS_HFI) { /* Conversions with immediate bitshift. */ const char *enc[] = { #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN, CVT_FLAVOUR_VAR NULL #undef CVT_VAR }; if (flavour < (int) ARRAY_SIZE (enc)) { opname = enc[flavour]; constraint (inst.operands[0].reg != inst.operands[1].reg, _("operands 0 and 1 must be the same register")); inst.operands[1] = inst.operands[2]; memset (&inst.operands[2], '\0', sizeof (inst.operands[2])); } } else { /* Conversions without bitshift. */ const char *enc[] = { #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN, CVT_FLAVOUR_VAR NULL #undef CVT_VAR }; if (flavour < (int) ARRAY_SIZE (enc)) opname = enc[flavour]; } if (opname) do_vfp_nsyn_opcode (opname); /* ARMv8.2 fp16 VCVT instruction. */ if (flavour == neon_cvt_flavour_s32_f16 || flavour == neon_cvt_flavour_u32_f16 || flavour == neon_cvt_flavour_f16_u32 || flavour == neon_cvt_flavour_f16_s32) do_scalar_fp16_v82_encode (); } static void do_vfp_nsyn_cvtz (void) { enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL); enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs); const char *enc[] = { #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN, CVT_FLAVOUR_VAR NULL #undef CVT_VAR }; if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour]) do_vfp_nsyn_opcode (enc[flavour]); } static void do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour, enum neon_cvt_mode mode) { int sz, op; int rm; /* Targets like FPv5-SP-D16 don't support FP v8 instructions with D register operands. */ if (flavour == neon_cvt_flavour_s32_f64 || flavour == neon_cvt_flavour_u32_f64) constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); if (flavour == neon_cvt_flavour_s32_f16 || flavour == neon_cvt_flavour_u32_f16) constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16), _(BAD_FP16)); set_pred_insn_type (OUTSIDE_PRED_INSN); switch (flavour) { case neon_cvt_flavour_s32_f64: sz = 1; op = 1; break; case neon_cvt_flavour_s32_f32: sz = 0; op = 1; break; case neon_cvt_flavour_s32_f16: sz = 0; op = 1; break; case neon_cvt_flavour_u32_f64: sz = 1; op = 0; break; case neon_cvt_flavour_u32_f32: sz = 0; op = 0; break; case neon_cvt_flavour_u32_f16: sz = 0; op = 0; break; default: first_error (_("invalid instruction shape")); return; } switch (mode) { case neon_cvt_mode_a: rm = 0; break; case neon_cvt_mode_n: rm = 1; break; case neon_cvt_mode_p: rm = 2; break; case neon_cvt_mode_m: rm = 3; break; default: first_error (_("invalid rounding mode")); return; } NEON_ENCODE (FPV8, inst); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm); inst.instruction |= sz << 8; /* ARMv8.2 fp16 VCVT instruction. */ if (flavour == neon_cvt_flavour_s32_f16 ||flavour == neon_cvt_flavour_u32_f16) do_scalar_fp16_v82_encode (); inst.instruction |= op << 7; inst.instruction |= rm << 16; inst.instruction |= 0xf0000000; inst.is_neon = true; } static void do_neon_cvt_1 (enum neon_cvt_mode mode) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ, NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_FH, NS_HF, NS_FHI, NS_HFI, NS_NULL); enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs); if (flavour == neon_cvt_flavour_invalid) return; /* PR11109: Handle round-to-zero for VCVT conversions. */ if (mode == neon_cvt_mode_z && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2) && (flavour == neon_cvt_flavour_s16_f16 || flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_s32_f32 || flavour == neon_cvt_flavour_u32_f32 || flavour == neon_cvt_flavour_s32_f64 || flavour == neon_cvt_flavour_u32_f64) && (rs == NS_FD || rs == NS_FF)) { do_vfp_nsyn_cvtz (); return; } /* ARMv8.2 fp16 VCVT conversions. */ if (mode == neon_cvt_mode_z && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16) && (flavour == neon_cvt_flavour_s32_f16 || flavour == neon_cvt_flavour_u32_f16) && (rs == NS_FH)) { do_vfp_nsyn_cvtz (); do_scalar_fp16_v82_encode (); return; } /* VFP rather than Neon conversions. */ if (flavour >= neon_cvt_flavour_first_fp) { if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z) do_vfp_nsyn_cvt (rs, flavour); else do_vfp_nsyn_cvt_fpv8 (flavour, mode); return; } switch (rs) { case NS_QQI: if (mode == neon_cvt_mode_z && (flavour == neon_cvt_flavour_f16_s16 || flavour == neon_cvt_flavour_f16_u16 || flavour == neon_cvt_flavour_s16_f16 || flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_f32_u32 || flavour == neon_cvt_flavour_f32_s32 || flavour == neon_cvt_flavour_s32_f32 || flavour == neon_cvt_flavour_u32_f32)) { if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; } /* fall through. */ case NS_DDI: { unsigned immbits; unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000, 0x0000100, 0x1000100, 0x0, 0x1000000}; if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)) && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)) { constraint (inst.operands[2].present && inst.operands[2].imm == 0, _("immediate value out of range")); switch (flavour) { case neon_cvt_flavour_f16_s16: case neon_cvt_flavour_f16_u16: case neon_cvt_flavour_s16_f16: case neon_cvt_flavour_u16_f16: constraint (inst.operands[2].imm > 16, _("immediate value out of range")); break; case neon_cvt_flavour_f32_u32: case neon_cvt_flavour_f32_s32: case neon_cvt_flavour_s32_f32: case neon_cvt_flavour_u32_f32: constraint (inst.operands[2].imm > 32, _("immediate value out of range")); break; default: inst.error = BAD_FPU; return; } } /* Fixed-point conversion with #0 immediate is encoded as an integer conversion. */ if (inst.operands[2].present && inst.operands[2].imm == 0) goto int_encode; NEON_ENCODE (IMMED, inst); if (flavour != neon_cvt_flavour_invalid) inst.instruction |= enctab[flavour]; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= 1 << 21; if (flavour < neon_cvt_flavour_s16_f16) { inst.instruction |= 1 << 21; immbits = 32 - inst.operands[2].imm; inst.instruction |= immbits << 16; } else { inst.instruction |= 3 << 20; immbits = 16 - inst.operands[2].imm; inst.instruction |= immbits << 16; inst.instruction &= ~(1 << 9); } neon_dp_fixup (&inst); } break; case NS_QQ: if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p) && (flavour == neon_cvt_flavour_s16_f16 || flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_s32_f32 || flavour == neon_cvt_flavour_u32_f32)) { if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH8)) return; } else if (mode == neon_cvt_mode_z && (flavour == neon_cvt_flavour_f16_s16 || flavour == neon_cvt_flavour_f16_u16 || flavour == neon_cvt_flavour_s16_f16 || flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_f32_u32 || flavour == neon_cvt_flavour_f32_s32 || flavour == neon_cvt_flavour_s32_f32 || flavour == neon_cvt_flavour_u32_f32)) { if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; } /* fall through. */ case NS_DD: if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z) { NEON_ENCODE (FLOAT, inst); if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH8)) return; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= (flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_u32_f32) << 7; inst.instruction |= mode << 8; if (flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_s16_f16) /* Mask off the original size bits and reencode them. */ inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18)); if (thumb_mode) inst.instruction |= 0xfc000000; else inst.instruction |= 0xf0000000; } else { int_encode: { unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080, 0x100, 0x180, 0x0, 0x080}; NEON_ENCODE (INTEGER, inst); if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)) { if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; } if (flavour != neon_cvt_flavour_invalid) inst.instruction |= enctab[flavour]; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; if (flavour >= neon_cvt_flavour_s16_f16 && flavour <= neon_cvt_flavour_f16_u16) /* Half precision. */ inst.instruction |= 1 << 18; else inst.instruction |= 2 << 18; neon_dp_fixup (&inst); } } break; /* Half-precision conversions for Advanced SIMD -- neon. */ case NS_QD: case NS_DQ: if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; if ((rs == NS_DQ) && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32)) { as_bad (_("operand size must match register width")); break; } if ((rs == NS_QD) && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16))) { as_bad (_("operand size must match register width")); break; } if (rs == NS_DQ) { if (flavour == neon_cvt_flavour_bf16_f32) { if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL) return; constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16)); /* VCVT.bf16.f32. */ inst.instruction = 0x11b60640; } else /* VCVT.f16.f32. */ inst.instruction = 0x3b60600; } else /* VCVT.f32.f16. */ inst.instruction = 0x3b60700; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; neon_dp_fixup (&inst); break; default: /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */ if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z) do_vfp_nsyn_cvt (rs, flavour); else do_vfp_nsyn_cvt_fpv8 (flavour, mode); } } static void do_neon_cvtr (void) { do_neon_cvt_1 (neon_cvt_mode_x); } static void do_neon_cvt (void) { do_neon_cvt_1 (neon_cvt_mode_z); } static void do_neon_cvta (void) { do_neon_cvt_1 (neon_cvt_mode_a); } static void do_neon_cvtn (void) { do_neon_cvt_1 (neon_cvt_mode_n); } static void do_neon_cvtp (void) { do_neon_cvt_1 (neon_cvt_mode_p); } static void do_neon_cvtm (void) { do_neon_cvt_1 (neon_cvt_mode_m); } static void do_neon_cvttb_2 (bool t, bool to, bool is_double) { if (is_double) mark_feature_used (&fpu_vfp_ext_armv8); encode_arm_vfp_reg (inst.operands[0].reg, (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm); inst.instruction |= to ? 0x10000 : 0; inst.instruction |= t ? 0x80 : 0; inst.instruction |= is_double ? 0x100 : 0; do_vfp_cond_or_thumb (); } static void do_neon_cvttb_1 (bool t) { enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD, NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL); if (rs == NS_NULL) return; else if (rs == NS_QQ || rs == NS_QQI) { int single_to_half = 0; if (!check_simd_pred_availability (true, NEON_CHECK_ARCH)) return; enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs); if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && (flavour == neon_cvt_flavour_u16_f16 || flavour == neon_cvt_flavour_s16_f16 || flavour == neon_cvt_flavour_f16_s16 || flavour == neon_cvt_flavour_f16_u16 || flavour == neon_cvt_flavour_u32_f32 || flavour == neon_cvt_flavour_s32_f32 || flavour == neon_cvt_flavour_f32_s32 || flavour == neon_cvt_flavour_f32_u32)) { inst.cond = 0xf; inst.instruction = N_MNEM_vcvt; set_pred_insn_type (INSIDE_VPT_INSN); do_neon_cvt_1 (neon_cvt_mode_z); return; } else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16) single_to_half = 1; else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32) { first_error (BAD_FPU); return; } unsigned op0 = inst.operands[0].reg; unsigned op1 = inst.operands[1].reg; /* NS_QQ so both registers are quads but inst.operands has their D-register values, so halve before encoding. */ if (rs == NS_QQ) { op0 >>= 1; op1 >>= 1; } inst.instruction = 0xee3f0e01; inst.instruction |= single_to_half << 28; inst.instruction |= HI1 (op0) << 22; inst.instruction |= LOW4 (op0) << 13; inst.instruction |= t << 12; inst.instruction |= HI1 (op1) << 5; inst.instruction |= LOW4 (op1) << 1; inst.is_neon = 1; } else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype) { inst.error = NULL; do_neon_cvttb_2 (t, /*to=*/true, /*is_double=*/false); } else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype) { inst.error = NULL; do_neon_cvttb_2 (t, /*to=*/false, /*is_double=*/false); } else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype) { /* The VCVTB and VCVTT instructions with D-register operands don't work for SP only targets. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); inst.error = NULL; do_neon_cvttb_2 (t, /*to=*/true, /*is_double=*/true); } else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype) { /* The VCVTB and VCVTT instructions with D-register operands don't work for SP only targets. */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); inst.error = NULL; do_neon_cvttb_2 (t, /*to=*/false, /*is_double=*/true); } else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype) { constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16)); inst.error = NULL; inst.instruction |= (1 << 8); inst.instruction &= ~(1 << 9); do_neon_cvttb_2 (t, /*to=*/true, /*is_double=*/false); } else return; } static void do_neon_cvtb (void) { do_neon_cvttb_1 (false); } static void do_neon_cvtt (void) { do_neon_cvttb_1 (true); } static void neon_move_immediate (void) { enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK); unsigned immlo, immhi = 0, immbits; int op, cmode, float_p; constraint (et.type == NT_invtype, _("operand size must be specified for immediate VMOV")); /* We start out as an MVN instruction if OP = 1, MOV otherwise. */ op = (inst.instruction & (1 << 5)) != 0; immlo = inst.operands[1].imm; if (inst.operands[1].regisimm) immhi = inst.operands[1].reg; constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0, _("immediate has bits set outside the operand size")); float_p = inst.operands[1].immisfloat; if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op, et.size, et.type)) == FAIL) { /* Invert relevant bits only. */ neon_invert_size (&immlo, &immhi, et.size); /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable with one or the other; those cases are caught by neon_cmode_for_move_imm. */ op = !op; if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op, et.size, et.type)) == FAIL) { first_error (_("immediate out of range")); return; } } inst.instruction &= ~(1 << 5); inst.instruction |= op << 5; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= cmode << 8; neon_write_immbits (immbits); } static void do_neon_mvn (void) { if (!check_simd_pred_availability (false, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; if (inst.operands[1].isreg) { enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) rs = neon_select_shape (NS_QQ, NS_NULL); else rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); if (rs == NS_NULL) return; NEON_ENCODE (INTEGER, inst); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; } else { NEON_ENCODE (IMMED, inst); neon_move_immediate (); } neon_dp_fixup (&inst); if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU); } } /* Encode instructions of form: |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0| | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */ static void neon_mixed_length (struct neon_type_el et, unsigned size) { inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= (et.type == NT_unsigned) << 24; inst.instruction |= neon_logbits (size) << 20; neon_dp_fixup (&inst); } static void do_neon_dyadic_long (void) { enum neon_shape rs = neon_select_shape (NS_QDD, NS_HHH, NS_FFF, NS_DDD, NS_NULL); if (rs == NS_QDD) { if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL) return; NEON_ENCODE (INTEGER, inst); /* FIXME: Type checking for lengthening op. */ struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && (inst.cond == 0xf || inst.cond == 0x10)) { /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd in an IT block with le/lt conditions. */ if (inst.cond == 0xf) inst.cond = 0xb; else if (inst.cond == 0x10) inst.cond = 0xd; inst.pred_insn_type = INSIDE_IT_INSN; if (inst.instruction == N_MNEM_vaddl) { inst.instruction = N_MNEM_vadd; do_neon_addsub_if_i (); } else if (inst.instruction == N_MNEM_vsubl) { inst.instruction = N_MNEM_vsub; do_neon_addsub_if_i (); } else if (inst.instruction == N_MNEM_vabdl) { inst.instruction = N_MNEM_vabd; do_neon_dyadic_if_su (); } } else first_error (BAD_FPU); } static void do_neon_abal (void) { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } static void neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes) { if (inst.operands[2].isscalar) { struct neon_type_el et = neon_check_type (3, NS_QDS, N_EQK | N_DBL, N_EQK, regtypes | N_KEY); NEON_ENCODE (SCALAR, inst); neon_mul_mac (et, et.type == NT_unsigned); } else { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, scalartypes | N_KEY); NEON_ENCODE (INTEGER, inst); neon_mixed_length (et, et.size); } } static void do_neon_mac_maybe_scalar_long (void) { neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32); } /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */ static unsigned neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p) { unsigned regno = NEON_SCALAR_REG (scalar); unsigned elno = NEON_SCALAR_INDEX (scalar); if (quad_p) { if (regno > 7 || elno > 3) goto bad_scalar; return ((regno & 0x7) | ((elno & 0x1) << 3) | (((elno >> 1) & 0x1) << 5)); } else { if (regno > 15 || elno > 1) goto bad_scalar; return (((regno & 0x1) << 5) | ((regno >> 1) & 0x7) | ((elno & 0x1) << 3)); } bad_scalar: first_error (_("scalar out of range for multiply instruction")); return 0; } static void do_neon_fmac_maybe_scalar_long (int subtype) { enum neon_shape rs; int high8; /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size" field (bits[21:20]) has different meaning. For scalar index variant, it's used to differentiate add and subtract, otherwise it's with fixed value 0x2. */ int size = -1; /* vfmal/vfmsl are in three-same D/Q register format or the third operand can be a scalar index register. */ if (inst.operands[2].isscalar) { high8 = 0xfe000000; if (subtype) size = 16; rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL); } else { high8 = 0xfc000000; size = 32; if (subtype) inst.instruction |= (0x1 << 23); rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL); } if (inst.cond != COND_ALWAYS) as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the " "behaviour is UNPREDICTABLE")); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml), _(BAD_FP16)); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8), _(BAD_FPU)); /* "opcode" from template has included "ubit", so simply pass 0 here. Also, the "S" bit in size field has been reused to differentiate vfmal and vfmsl, so we simply pass -1 as size. */ unsigned quad_p = (rs == NS_QDD || rs == NS_QDS); neon_three_same (quad_p, 0, size); /* Undo neon_dp_fixup. Redo the high eight bits. */ inst.instruction &= 0x00ffffff; inst.instruction |= high8; /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on whether the instruction is in Q form and whether Vm is a scalar indexed operand. */ if (inst.operands[2].isscalar) { unsigned rm = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p); inst.instruction &= 0xffffffd0; inst.instruction |= rm; if (!quad_p) { /* Redo Rn as well. */ inst.instruction &= 0xfff0ff7f; inst.instruction |= HI4 (inst.operands[1].reg) << 16; inst.instruction |= LOW1 (inst.operands[1].reg) << 7; } } else if (!quad_p) { /* Redo Rn and Rm. */ inst.instruction &= 0xfff0ff50; inst.instruction |= HI4 (inst.operands[1].reg) << 16; inst.instruction |= LOW1 (inst.operands[1].reg) << 7; inst.instruction |= HI4 (inst.operands[2].reg); inst.instruction |= LOW1 (inst.operands[2].reg) << 5; } } static void do_neon_vfmal (void) { return do_neon_fmac_maybe_scalar_long (0); } static void do_neon_vfmsl (void) { return do_neon_fmac_maybe_scalar_long (1); } static void do_neon_dyadic_wide (void) { struct neon_type_el et = neon_check_type (3, NS_QQD, N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } static void do_neon_dyadic_narrow (void) { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY); /* Operand sign is unimportant, and the U bit is part of the opcode, so force the operand type to integer. */ et.type = NT_integer; neon_mixed_length (et, et.size / 2); } static void do_neon_mul_sat_scalar_long (void) { neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32); } static void do_neon_vmull (void) { if (inst.operands[2].isscalar) do_neon_mac_maybe_scalar_long (); else { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY); if (et.type == NT_poly) NEON_ENCODE (POLY, inst); else NEON_ENCODE (INTEGER, inst); /* For polynomial encoding the U bit must be zero, and the size must be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non obviously, as 0b10). */ if (et.size == 64) { /* Check we're on the correct architecture. */ if (!mark_feature_used (&fpu_crypto_ext_armv8)) inst.error = _("Instruction form not available on this architecture."); et.size = 32; } neon_mixed_length (et, et.size); } } static void do_neon_ext (void) { enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY); unsigned imm = (inst.operands[3].imm * et.size) / 8; constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8), _("shift out of range")); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= imm << 8; neon_dp_fixup (&inst); } static void do_neon_rev (void) { if (!check_simd_pred_availability (false, NEON_CHECK_ARCH | NEON_CHECK_CC)) return; enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) rs = neon_select_shape (NS_QQ, NS_NULL); else rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); unsigned op = (inst.instruction >> 7) & 3; /* N (width of reversed regions) is encoded as part of the bitmask. We extract it here to check the elements to be reversed are smaller. Otherwise we'd get a reserved instruction. */ unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64 && inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("Warning: 64-bit element size and same destination and source" " operands makes instruction UNPREDICTABLE")); gas_assert (elsize != 0); constraint (et.size >= elsize, _("elements must be smaller than reversal region")); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_dup (void) { if (inst.operands[1].isscalar) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1), BAD_FPU); enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); unsigned sizebits = et.size >> 3; unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg); int logsize = neon_logbits (et.size); unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize; if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL) return; NEON_ENCODE (SCALAR, inst); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (dm); inst.instruction |= HI1 (dm) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= x << 17; inst.instruction |= sizebits << 16; neon_dp_fixup (&inst); } else { enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_8 | N_16 | N_32 | N_KEY, N_EQK); if (rs == NS_QR) { if (!check_simd_pred_availability (false, NEON_CHECK_ARCH)) return; } else constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1), BAD_FPU); if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { if (inst.operands[1].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[1].reg == REG_PC) as_tsktsk (MVE_BAD_PC); } /* Duplicate ARM register to lanes of vector. */ NEON_ENCODE (ARMREG, inst); switch (et.size) { case 8: inst.instruction |= 0x400000; break; case 16: inst.instruction |= 0x000020; break; case 32: inst.instruction |= 0x000000; break; default: break; } inst.instruction |= LOW4 (inst.operands[1].reg) << 12; inst.instruction |= LOW4 (inst.operands[0].reg) << 16; inst.instruction |= HI1 (inst.operands[0].reg) << 7; inst.instruction |= neon_quad (rs) << 21; /* The encoding for this instruction is identical for the ARM and Thumb variants, except for the condition field. */ do_vfp_cond_or_thumb (); } } static void do_mve_mov (int toQ) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return; if (inst.cond > COND_ALWAYS) inst.pred_insn_type = MVE_UNPREDICABLE_INSN; unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3; if (toQ) { Q0 = 0; Q1 = 1; Rt = 2; Rt2 = 3; } constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2, _("Index one must be [2,3] and index two must be two less than" " index one.")); constraint (!toQ && inst.operands[Rt].reg == inst.operands[Rt2].reg, _("Destination registers may not be the same")); constraint (inst.operands[Rt].reg == REG_SP || inst.operands[Rt2].reg == REG_SP, BAD_SP); constraint (inst.operands[Rt].reg == REG_PC || inst.operands[Rt2].reg == REG_PC, BAD_PC); inst.instruction = 0xec000f00; inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23; inst.instruction |= !!toQ << 20; inst.instruction |= inst.operands[Rt2].reg << 16; inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13; inst.instruction |= (inst.operands[Q1].reg % 4) << 4; inst.instruction |= inst.operands[Rt].reg; } static void do_mve_movn (void) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return; if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32 | N_KEY); inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= (neon_logbits (et.size) - 1) << 18; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } /* VMOV has particularly many variations. It can be one of: 0. VMOV , 1. VMOV
, (Register operations, which are VORR with Rm = Rn.) 2. VMOV.
, # 3. VMOV.
, # (Immediate loads.) 4. VMOV. , (ARM register to scalar.) 5. VMOV , , (Two ARM registers to vector.) 6. VMOV.
, (Scalar to ARM register.) 7. VMOV , , (Vector to two ARM registers.) 8. VMOV.F32 , 9. VMOV.F64
, (VFP register moves.) 10. VMOV.F32 , #imm 11. VMOV.F64
, #imm (VFP float immediate load.) 12. VMOV , (VFP single to ARM reg.) 13. VMOV , (ARM reg to VFP single.) 14. VMOV , , , (Two ARM regs to two VFP singles.) 15. VMOV , , , (Two VFP singles to two ARM regs.) 16. VMOV , , , 17. VMOV , , , 18. VMOV.
, 19. VMOV.
, These cases can be disambiguated using neon_select_shape, except cases 1/9 and 3/11 which depend on the operand type too. All the encoded bits are hardcoded by this function. Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!). Cases 5, 7 may be used with VFPv2 and above. FIXME: Some of the checking may be a bit sloppy (in a couple of cases you can specify a type where it doesn't make sense to, and is ignored). */ static void do_neon_mov (void) { enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR, NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR, NS_HR, NS_RH, NS_HI, NS_NULL); struct neon_type_el et; const char *ldconst = 0; switch (rs) { case NS_DD: /* case 1/9. */ et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY); /* It is not an error here if no type is given. */ inst.error = NULL; /* In MVE we interpret the following instructions as same, so ignoring the following type (float) and size (64) checks. a: VMOV
, b: VMOV.F64
, . */ if ((et.type == NT_float && et.size == 64) || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))) { do_vfp_nsyn_opcode ("fcpyd"); break; } /* fall through. */ case NS_QQ: /* case 0/1. */ { if (!check_simd_pred_availability (false, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; /* The architecture manual I have doesn't explicitly state which value the U bit should have for register->register moves, but the equivalent VORR instruction has U = 0, so do that. */ inst.instruction = 0x0200110; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= neon_quad (rs) << 6; neon_dp_fixup (&inst); } break; case NS_DI: /* case 3/11. */ et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY); inst.error = NULL; if (et.type == NT_float && et.size == 64) { /* case 11 (fconstd). */ ldconst = "fconstd"; goto encode_fconstd; } /* fall through. */ case NS_QI: /* case 2/3. */ if (!check_simd_pred_availability (false, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; inst.instruction = 0x0800010; neon_move_immediate (); neon_dp_fixup (&inst); break; case NS_SR: /* case 4. */ { unsigned bcdebits = 0; int logsize; unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg); unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg); /* . is optional here, defaulting to .32. */ if (inst.vectype.elems == 0 && inst.operands[0].vectype.type == NT_invtype && inst.operands[1].vectype.type == NT_invtype) { inst.vectype.el[0].type = NT_untyped; inst.vectype.el[0].size = 32; inst.vectype.elems = 1; } et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK); logsize = neon_logbits (et.size); if (et.size != 32) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL) return; } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); } if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { if (inst.operands[1].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[1].reg == REG_PC) as_tsktsk (MVE_BAD_PC); } unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128; constraint (et.type == NT_invtype, _("bad type for scalar")); constraint (x >= size / et.size, _("scalar index out of range")); switch (et.size) { case 8: bcdebits = 0x8; break; case 16: bcdebits = 0x1; break; case 32: bcdebits = 0x0; break; default: ; } bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize; inst.instruction = 0xe000b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (dn) << 16; inst.instruction |= HI1 (dn) << 7; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= (bcdebits & 3) << 5; inst.instruction |= ((bcdebits >> 2) & 3) << 21; inst.instruction |= (x >> (3-logsize)) << 16; } break; case NS_DRR: /* case 5 (fmdrr). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); inst.instruction = 0xc400b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (inst.operands[0].reg); inst.instruction |= HI1 (inst.operands[0].reg) << 5; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; break; case NS_RS: /* case 6. */ { unsigned logsize; unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg); unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg); unsigned abcdebits = 0; /* .
is optional here, defaulting to .32. */ if (inst.vectype.elems == 0 && inst.operands[0].vectype.type == NT_invtype && inst.operands[1].vectype.type == NT_invtype) { inst.vectype.el[0].type = NT_untyped; inst.vectype.el[0].size = 32; inst.vectype.elems = 1; } et = neon_check_type (2, NS_NULL, N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY); logsize = neon_logbits (et.size); if (et.size != 32) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); } if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { if (inst.operands[0].reg == REG_SP) as_tsktsk (MVE_BAD_SP); else if (inst.operands[0].reg == REG_PC) as_tsktsk (MVE_BAD_PC); } unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128; constraint (et.type == NT_invtype, _("bad type for scalar")); constraint (x >= size / et.size, _("scalar index out of range")); switch (et.size) { case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break; case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break; case 32: abcdebits = 0x00; break; default: ; } abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize; inst.instruction = 0xe100b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (dn) << 16; inst.instruction |= HI1 (dn) << 7; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (abcdebits & 3) << 5; inst.instruction |= (abcdebits >> 2) << 21; inst.instruction |= (x >> (3-logsize)) << 16; } break; case NS_RRD: /* case 7 (fmrrd). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); inst.instruction = 0xc500b10; do_vfp_cond_or_thumb (); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; break; case NS_FF: /* case 8 (fcpys). */ do_vfp_nsyn_opcode ("fcpys"); break; case NS_HI: case NS_FI: /* case 10 (fconsts). */ ldconst = "fconsts"; encode_fconstd: if (!inst.operands[1].immisfloat) { unsigned new_imm; /* Immediate has to fit in 8 bits so float is enough. */ float imm = (float) inst.operands[1].imm; memcpy (&new_imm, &imm, sizeof (float)); /* But the assembly may have been written to provide an integer bit pattern that equates to a float, so check that the conversion has worked. */ if (is_quarter_float (new_imm)) { if (is_quarter_float (inst.operands[1].imm)) as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)")); inst.operands[1].imm = new_imm; inst.operands[1].immisfloat = 1; } } if (is_quarter_float (inst.operands[1].imm)) { inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm); do_vfp_nsyn_opcode (ldconst); /* ARMv8.2 fp16 vmov.f16 instruction. */ if (rs == NS_HI) do_scalar_fp16_v82_encode (); } else first_error (_("immediate out of range")); break; case NS_RH: case NS_RF: /* case 12 (fmrs). */ do_vfp_nsyn_opcode ("fmrs"); /* ARMv8.2 fp16 vmov.f16 instruction. */ if (rs == NS_RH) do_scalar_fp16_v82_encode (); break; case NS_HR: case NS_FR: /* case 13 (fmsr). */ do_vfp_nsyn_opcode ("fmsr"); /* ARMv8.2 fp16 vmov.f16 instruction. */ if (rs == NS_HR) do_scalar_fp16_v82_encode (); break; case NS_RRSS: do_mve_mov (0); break; case NS_SSRR: do_mve_mov (1); break; /* The encoders for the fmrrs and fmsrr instructions expect three operands (one of which is a list), but we have parsed four. Do some fiddling to make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2 expect. */ case NS_RRFF: /* case 14 (fmrrs). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); constraint (inst.operands[3].reg != inst.operands[2].reg + 1, _("VFP registers must be adjacent")); inst.operands[2].imm = 2; memset (&inst.operands[3], '\0', sizeof (inst.operands[3])); do_vfp_nsyn_opcode ("fmrrs"); break; case NS_FFRR: /* case 15 (fmsrr). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); constraint (inst.operands[1].reg != inst.operands[0].reg + 1, _("VFP registers must be adjacent")); inst.operands[1] = inst.operands[2]; inst.operands[2] = inst.operands[3]; inst.operands[0].imm = 2; memset (&inst.operands[3], '\0', sizeof (inst.operands[3])); do_vfp_nsyn_opcode ("fmsrr"); break; case NS_NULL: /* neon_select_shape has determined that the instruction shape is wrong and has already set the error message. */ break; default: abort (); } } static void do_mve_movl (void) { if (!(inst.operands[0].present && inst.operands[0].isquad && inst.operands[1].present && inst.operands[1].isquad && !inst.operands[2].present)) { inst.instruction = 0; inst.cond = 0xb; if (thumb_mode) set_pred_insn_type (INSIDE_IT_INSN); do_neon_mov (); return; } if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return; if (inst.cond != COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY); inst.instruction |= (et.type == NT_unsigned) << 28; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= (neon_logbits (et.size) + 1) << 19; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg); inst.is_neon = 1; } static void do_neon_rshift_round_imm (void) { if (!check_simd_pred_availability (false, NEON_CHECK_ARCH | NEON_CHECK_CC)) return; enum neon_shape rs; struct neon_type_el et; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { rs = neon_select_shape (NS_QQI, NS_NULL); et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY); } else { rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY); } int imm = inst.operands[2].imm; /* imm == 0 case is encoded as VMOV for V{R}SHR. */ if (imm == 0) { inst.operands[2].present = 0; do_neon_mov (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range for shift")); neon_imm_shift (true, et.type == NT_unsigned, neon_quad (rs), et, et.size - imm); } static void do_neon_movhf (void) { enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL); constraint (rs != NS_HH, _("invalid suffix")); if (inst.cond != COND_ALWAYS) { if (thumb_mode) { as_warn (_("scalar fp16 instruction cannot be conditional," " the behaviour is UNPREDICTABLE")); } else { inst.error = BAD_COND; return; } } do_vfp_sp_monadic (); inst.is_neon = 1; inst.instruction |= 0xf0000000; } static void do_neon_movl (void) { struct neon_type_el et = neon_check_type (2, NS_QD, N_EQK | N_DBL, N_SU_32 | N_KEY); unsigned sizebits = et.size >> 3; inst.instruction |= sizebits << 19; neon_two_same (0, et.type == NT_unsigned, -1); } static void do_neon_trn (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); NEON_ENCODE (INTEGER, inst); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_zip_uzp (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); if (rs == NS_DD && et.size == 32) { /* Special case: encode as VTRN.32
, . */ inst.instruction = N_MNEM_vtrn; do_neon_trn (); return; } neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_sat_abs_neg (void) { if (!check_simd_pred_availability (false, NEON_CHECK_CC | NEON_CHECK_ARCH)) return; enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) rs = neon_select_shape (NS_QQ, NS_NULL); else rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_pair_long (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY); /* Unsigned is encoded in OP field (bit 7) for these instruction. */ inst.instruction |= (et.type == NT_unsigned) << 7; neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_recip_est (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY); inst.instruction |= (et.type == NT_float) << 8; neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_cls (void) { if (!check_simd_pred_availability (false, NEON_CHECK_ARCH | NEON_CHECK_CC)) return; enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) rs = neon_select_shape (NS_QQ, NS_NULL); else rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_clz (void) { if (!check_simd_pred_availability (false, NEON_CHECK_ARCH | NEON_CHECK_CC)) return; enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) rs = neon_select_shape (NS_QQ, NS_NULL); else rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_I8 | N_I16 | N_I32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_cnt (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_INT, N_8 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_swp (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); if (rs == NS_NULL) return; neon_two_same (neon_quad (rs), 1, -1); } static void do_neon_tbl_tbx (void) { unsigned listlenbits; neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY); if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4) { first_error (_("bad list length for table lookup")); return; } listlenbits = inst.operands[1].imm - 1; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= listlenbits << 8; neon_dp_fixup (&inst); } static void do_neon_ldm_stm (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), _(BAD_FPU)); /* P, U and L bits are part of bitmask. */ int is_dbmode = (inst.instruction & (1 << 24)) != 0; unsigned offsetbits = inst.operands[1].imm * 2; if (inst.operands[1].issingle) { do_vfp_nsyn_ldm_stm (is_dbmode); return; } constraint (is_dbmode && !inst.operands[0].writeback, _("writeback (!) must be used for VLDMDB and VSTMDB")); constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16, _("register list must contain at least 1 and at most 16 " "registers")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[0].writeback << 21; inst.instruction |= LOW4 (inst.operands[1].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 22; inst.instruction |= offsetbits; do_vfp_cond_or_thumb (); } static void do_vfp_nsyn_push_pop_check (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd), _(BAD_FPU)); if (inst.operands[1].issingle) { constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 32, _("register list must contain at least 1 and at most 32 registers")); } else { constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16, _("register list must contain at least 1 and at most 16 registers")); } } static void do_vfp_nsyn_pop (void) { nsyn_insert_sp (); if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return do_vfp_nsyn_opcode ("vldm"); do_vfp_nsyn_push_pop_check (); if (inst.operands[1].issingle) do_vfp_nsyn_opcode ("fldmias"); else do_vfp_nsyn_opcode ("fldmiad"); } static void do_vfp_nsyn_push (void) { nsyn_insert_sp (); if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) return do_vfp_nsyn_opcode ("vstmdb"); do_vfp_nsyn_push_pop_check (); if (inst.operands[1].issingle) do_vfp_nsyn_opcode ("fstmdbs"); else do_vfp_nsyn_opcode ("fstmdbd"); } static void do_neon_ldr_str (void) { int is_ldr = (inst.instruction & (1 << 20)) != 0; /* Use of PC in vstr in ARM mode is deprecated in ARMv7. And is UNPREDICTABLE in thumb mode. */ if (!is_ldr && inst.operands[1].reg == REG_PC && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode)) { if (thumb_mode) inst.error = _("Use of PC here is UNPREDICTABLE"); else if (warn_on_deprecated) as_tsktsk (_("Use of PC here is deprecated")); } if (inst.operands[0].issingle) { if (is_ldr) do_vfp_nsyn_opcode ("flds"); else do_vfp_nsyn_opcode ("fsts"); /* ARMv8.2 vldr.16/vstr.16 instruction. */ if (inst.vectype.el[0].size == 16) do_scalar_fp16_v82_encode (); } else { if (is_ldr) do_vfp_nsyn_opcode ("fldd"); else do_vfp_nsyn_opcode ("fstd"); } } static void do_t_vldr_vstr_sysreg (void) { int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20; bool is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0); /* Use of PC is UNPREDICTABLE. */ if (inst.operands[1].reg == REG_PC) inst.error = _("Use of PC here is UNPREDICTABLE"); if (inst.operands[1].immisreg) inst.error = _("instruction does not accept register index"); if (!inst.operands[1].isreg) inst.error = _("instruction does not accept PC-relative addressing"); if (abs (inst.operands[1].imm) >= (1 << 7)) inst.error = _("immediate value out of range"); inst.instruction = 0xec000f80; if (is_vldr) inst.instruction |= 1 << sysreg_vldr_bitno; encode_arm_cp_address (1, true, false, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM); inst.instruction |= (inst.operands[0].imm & 0x7) << 13; inst.instruction |= (inst.operands[0].imm & 0x8) << 19; } static void do_vldr_vstr (void) { bool sysreg_op = !inst.operands[0].isreg; /* VLDR/VSTR (System Register). */ if (sysreg_op) { if (!mark_feature_used (&arm_ext_v8_1m_main)) as_bad (_("Instruction not permitted on this architecture")); do_t_vldr_vstr_sysreg (); } /* VLDR/VSTR. */ else { if (!mark_feature_used (&fpu_vfp_ext_v1xd) && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) as_bad (_("Instruction not permitted on this architecture")); do_neon_ldr_str (); } } /* "interleave" version also handles non-interleaving register VLD1/VST1 instructions. */ static void do_neon_ld_st_interleave (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32 | N_64); unsigned alignbits = 0; unsigned idx; /* The bits in this table go: 0: register stride of one (0) or two (1) 1,2: register list length, minus one (1, 2, 3, 4). 3,4: in instruction type, minus one (VLD / VST). We use -1 for invalid entries. */ const int typetable[] = { 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */ -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */ -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */ -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */ }; int typebits; if (et.type == NT_invtype) return; if (inst.operands[1].immisalign) switch (inst.operands[1].imm >> 8) { case 64: alignbits = 1; break; case 128: if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4) goto bad_alignment; alignbits = 2; break; case 256: if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4) goto bad_alignment; alignbits = 3; break; default: bad_alignment: first_error (_("bad alignment")); return; } inst.instruction |= alignbits << 4; inst.instruction |= neon_logbits (et.size) << 6; /* Bits [4:6] of the immediate in a list specifier encode register stride (minus 1) in bit 4, and list length in bits [5:6]. We put the of VLD/VST in bits [9:8] of the initial bitmask. Suck it out here, look up the right value for "type" in a table based on this value and the given list style, then stick it back. */ idx = ((inst.operands[0].imm >> 4) & 7) | (((inst.instruction >> 8) & 3) << 3); typebits = typetable[idx]; constraint (typebits == -1, _("bad list type for instruction")); constraint (((inst.instruction >> 8) & 3) && et.size == 64, BAD_EL_TYPE); inst.instruction &= ~0xf00; inst.instruction |= typebits << 8; } /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup. *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0 otherwise. The variable arguments are a list of pairs of legal (size, align) values, terminated with -1. */ static int neon_alignment_bit (int size, int align, int *do_alignment, ...) { va_list ap; int result = FAIL, thissize, thisalign; if (!inst.operands[1].immisalign) { *do_alignment = 0; return SUCCESS; } va_start (ap, do_alignment); do { thissize = va_arg (ap, int); if (thissize == -1) break; thisalign = va_arg (ap, int); if (size == thissize && align == thisalign) result = SUCCESS; } while (result != SUCCESS); va_end (ap); if (result == SUCCESS) *do_alignment = 1; else first_error (_("unsupported alignment for instruction")); return result; } static void do_neon_ld_st_lane (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32); int align_good, do_alignment = 0; int logsize = neon_logbits (et.size); int align = inst.operands[1].imm >> 8; int n = (inst.instruction >> 8) & 3; int max_el = 64 / et.size; if (et.type == NT_invtype) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1, _("bad list length")); constraint (NEON_LANE (inst.operands[0].imm) >= max_el, _("scalar index out of range")); constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2 && et.size == 8, _("stride of 2 unavailable when element size is 8")); switch (n) { case 0: /* VLD1 / VST1. */ align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16, 32, 32, -1); if (align_good == FAIL) return; if (do_alignment) { unsigned alignbits = 0; switch (et.size) { case 16: alignbits = 0x1; break; case 32: alignbits = 0x3; break; default: ; } inst.instruction |= alignbits << 4; } break; case 1: /* VLD2 / VST2. */ align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16, 16, 32, 32, 64, -1); if (align_good == FAIL) return; if (do_alignment) inst.instruction |= 1 << 4; break; case 2: /* VLD3 / VST3. */ constraint (inst.operands[1].immisalign, _("can't use alignment with this instruction")); break; case 3: /* VLD4 / VST4. */ align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32, 16, 64, 32, 64, 32, 128, -1); if (align_good == FAIL) return; if (do_alignment) { unsigned alignbits = 0; switch (et.size) { case 8: alignbits = 0x1; break; case 16: alignbits = 0x1; break; case 32: alignbits = (align == 64) ? 0x1 : 0x2; break; default: ; } inst.instruction |= alignbits << 4; } break; default: ; } /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */ if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << (4 + logsize); inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5); inst.instruction |= logsize << 10; } /* Encode single n-element structure to all lanes VLD instructions. */ static void do_neon_ld_dup (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32); int align_good, do_alignment = 0; if (et.type == NT_invtype) return; switch ((inst.instruction >> 8) & 3) { case 0: /* VLD1. */ gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2); align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8, &do_alignment, 16, 16, 32, 32, -1); if (align_good == FAIL) return; switch (NEON_REGLIST_LENGTH (inst.operands[0].imm)) { case 1: break; case 2: inst.instruction |= 1 << 5; break; default: first_error (_("bad list length")); return; } inst.instruction |= neon_logbits (et.size) << 6; break; case 1: /* VLD2. */ align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8, &do_alignment, 8, 16, 16, 32, 32, 64, -1); if (align_good == FAIL) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; inst.instruction |= neon_logbits (et.size) << 6; break; case 2: /* VLD3. */ constraint (inst.operands[1].immisalign, _("can't use alignment with this instruction")); constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; inst.instruction |= neon_logbits (et.size) << 6; break; case 3: /* VLD4. */ { int align = inst.operands[1].imm >> 8; align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32, 16, 64, 32, 64, 32, 128, -1); if (align_good == FAIL) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; if (et.size == 32 && align == 128) inst.instruction |= 0x3 << 6; else inst.instruction |= neon_logbits (et.size) << 6; } break; default: ; } inst.instruction |= do_alignment << 4; } /* Disambiguate VLD and VST instructions, and fill in common bits (those apart from bits [11:4]. */ static void do_neon_ldx_stx (void) { if (inst.operands[1].isreg) constraint (inst.operands[1].reg == REG_PC, BAD_PC); switch (NEON_LANE (inst.operands[0].imm)) { case NEON_INTERLEAVE_LANES: NEON_ENCODE (INTERLV, inst); do_neon_ld_st_interleave (); break; case NEON_ALL_LANES: NEON_ENCODE (DUP, inst); if (inst.instruction == N_INV) { first_error ("only loads support such operands"); break; } do_neon_ld_dup (); break; default: NEON_ENCODE (LANE, inst); do_neon_ld_st_lane (); } /* L bit comes from bit mask. */ inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= inst.operands[1].reg << 16; if (inst.operands[1].postind) { int postreg = inst.operands[1].imm & 0xf; constraint (!inst.operands[1].immisreg, _("post-index must be a register")); constraint (postreg == 0xd || postreg == 0xf, _("bad register for post-index")); inst.instruction |= postreg; } else { constraint (inst.operands[1].immisreg, BAD_ADDR_MODE); constraint (inst.relocs[0].exp.X_op != O_constant || inst.relocs[0].exp.X_add_number != 0, BAD_ADDR_MODE); if (inst.operands[1].writeback) { inst.instruction |= 0xd; } else inst.instruction |= 0xf; } if (thumb_mode) inst.instruction |= 0xf9000000; else inst.instruction |= 0xf4000000; } /* FP v8. */ static void do_vfp_nsyn_fpv8 (enum neon_shape rs) { /* Targets like FPv5-SP-D16 don't support FP v8 instructions with D register operands. */ if (neon_shape_class[rs] == SC_DOUBLE) constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); NEON_ENCODE (FPV8, inst); if (rs == NS_FFF || rs == NS_HHH) { do_vfp_sp_dyadic (); /* ARMv8.2 fp16 instruction. */ if (rs == NS_HHH) do_scalar_fp16_v82_encode (); } else do_vfp_dp_rd_rn_rm (); if (rs == NS_DDD) inst.instruction |= 0x100; inst.instruction |= 0xf0000000; } static void do_vsel (void) { set_pred_insn_type (OUTSIDE_PRED_INSN); if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS) first_error (_("invalid instruction shape")); } static void do_vmaxnm (void) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) set_pred_insn_type (OUTSIDE_PRED_INSN); if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS) return; if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH8)) return; neon_dyadic_misc (NT_untyped, N_F_16_32, 0); } static void do_vrint_1 (enum neon_cvt_mode mode) { enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL); struct neon_type_el et; if (rs == NS_NULL) return; /* Targets like FPv5-SP-D16 don't support FP v8 instructions with D register operands. */ if (neon_shape_class[rs] == SC_DOUBLE) constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP); if (et.type != NT_invtype) { /* VFP encodings. */ if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m) set_pred_insn_type (OUTSIDE_PRED_INSN); NEON_ENCODE (FPV8, inst); if (rs == NS_FF || rs == NS_HH) do_vfp_sp_monadic (); else do_vfp_dp_rd_rm (); switch (mode) { case neon_cvt_mode_r: inst.instruction |= 0x00000000; break; case neon_cvt_mode_z: inst.instruction |= 0x00000080; break; case neon_cvt_mode_x: inst.instruction |= 0x00010000; break; case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break; case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break; case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break; case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break; default: abort (); } inst.instruction |= (rs == NS_DD) << 8; do_vfp_cond_or_thumb (); /* ARMv8.2 fp16 vrint instruction. */ if (rs == NS_HH) do_scalar_fp16_v82_encode (); } else { /* Neon encodings (or something broken...). */ inst.error = NULL; et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY); if (et.type == NT_invtype) return; if (!check_simd_pred_availability (true, NEON_CHECK_CC | NEON_CHECK_ARCH8)) return; NEON_ENCODE (FLOAT, inst); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; /* Mask off the original size bits and reencode them. */ inst.instruction = ((inst.instruction & 0xfff3ffff) | neon_logbits (et.size) << 18); switch (mode) { case neon_cvt_mode_z: inst.instruction |= 3 << 7; break; case neon_cvt_mode_x: inst.instruction |= 1 << 7; break; case neon_cvt_mode_a: inst.instruction |= 2 << 7; break; case neon_cvt_mode_n: inst.instruction |= 0 << 7; break; case neon_cvt_mode_p: inst.instruction |= 7 << 7; break; case neon_cvt_mode_m: inst.instruction |= 5 << 7; break; case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break; default: abort (); } if (thumb_mode) inst.instruction |= 0xfc000000; else inst.instruction |= 0xf0000000; } } static void do_vrintx (void) { do_vrint_1 (neon_cvt_mode_x); } static void do_vrintz (void) { do_vrint_1 (neon_cvt_mode_z); } static void do_vrintr (void) { do_vrint_1 (neon_cvt_mode_r); } static void do_vrinta (void) { do_vrint_1 (neon_cvt_mode_a); } static void do_vrintn (void) { do_vrint_1 (neon_cvt_mode_n); } static void do_vrintp (void) { do_vrint_1 (neon_cvt_mode_p); } static void do_vrintm (void) { do_vrint_1 (neon_cvt_mode_m); } static unsigned neon_scalar_for_vcmla (unsigned opnd, unsigned elsize) { unsigned regno = NEON_SCALAR_REG (opnd); unsigned elno = NEON_SCALAR_INDEX (opnd); if (elsize == 16 && elno < 2 && regno < 16) return regno | (elno << 4); else if (elsize == 32 && elno == 0) return regno; first_error (_("scalar out of range")); return 0; } static void do_vcmla (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8) || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU)); constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); unsigned rot = inst.relocs[0].exp.X_add_number; constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270, _("immediate out of range")); rot /= 90; if (!check_simd_pred_availability (true, NEON_CHECK_ARCH8 | NEON_CHECK_CC)) return; if (inst.operands[2].isscalar) { if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)) first_error (_("invalid instruction shape")); enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL); unsigned size = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32).size; unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size); inst.is_neon = 1; inst.instruction = 0xfe000800; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (m); inst.instruction |= HI1 (m) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= rot << 20; inst.instruction |= (size == 32) << 23; } else { enum neon_shape rs; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)) rs = neon_select_shape (NS_QQQI, NS_NULL); else rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL); unsigned size = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32).size; if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32 && (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg)) as_tsktsk (BAD_MVE_SRCDEST); neon_three_same (neon_quad (rs), 0, -1); inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */ inst.instruction |= 0xfc200800; inst.instruction |= rot << 23; inst.instruction |= (size == 32) << 20; } } static void do_vcadd (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8) || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU)); constraint (inst.relocs[0].exp.X_op != O_constant, _("expression too complex")); unsigned rot = inst.relocs[0].exp.X_add_number; constraint (rot != 90 && rot != 270, _("immediate out of range")); enum neon_shape rs; struct neon_type_el et; if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL); et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32); } else { rs = neon_select_shape (NS_QQQI, NS_NULL); et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8 | N_I16 | N_I32); if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg) as_tsktsk (_("Warning: 32-bit element size and same first and third " "operand makes instruction UNPREDICTABLE")); } if (et.type == NT_invtype) return; if (!check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8 | NEON_CHECK_CC)) return; if (et.type == NT_float) { neon_three_same (neon_quad (rs), 0, -1); inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */ inst.instruction |= 0xfc800800; inst.instruction |= (rot == 270) << 24; inst.instruction |= (et.size == 32) << 20; } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU); inst.instruction = 0xfe000f00; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_logbits (et.size) << 20; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= (rot == 270) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= LOW4 (inst.operands[2].reg); inst.is_neon = 1; } } /* Dot Product instructions encoding support. */ static void do_neon_dotproduct (int unsigned_p) { enum neon_shape rs; unsigned scalar_oprd2 = 0; int high8; if (inst.cond != COND_ALWAYS) as_warn (_("Dot Product instructions cannot be conditional, the behaviour " "is UNPREDICTABLE")); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8), _(BAD_FPU)); /* Dot Product instructions are in three-same D/Q register format or the third operand can be a scalar index register. */ if (inst.operands[2].isscalar) { scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32); high8 = 0xfe000000; rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); } else { high8 = 0xfc000000; rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); } if (unsigned_p) neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8); else neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8); /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot Product instruction, so we pass 0 as the "ubit" parameter. And the "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */ neon_three_same (neon_quad (rs), 0, 32); /* Undo neon_dp_fixup. Dot Product instructions are using a slightly different NEON three-same encoding. */ inst.instruction &= 0x00ffffff; inst.instruction |= high8; /* Encode 'U' bit which indicates signedness. */ inst.instruction |= (unsigned_p ? 1 : 0) << 4; /* Re-encode operand2 if it's indexed scalar operand. What has been encoded from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not the instruction encoding. */ if (inst.operands[2].isscalar) { inst.instruction &= 0xffffffd0; inst.instruction |= LOW4 (scalar_oprd2); inst.instruction |= HI1 (scalar_oprd2) << 5; } } /* Dot Product instructions for signed integer. */ static void do_neon_dotproduct_s (void) { return do_neon_dotproduct (0); } /* Dot Product instructions for unsigned integer. */ static void do_neon_dotproduct_u (void) { return do_neon_dotproduct (1); } static void do_vusdot (void) { enum neon_shape rs; set_pred_insn_type (OUTSIDE_PRED_INSN); if (inst.operands[2].isscalar) { rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY); inst.instruction |= (1 << 25); int idx = inst.operands[2].reg & 0xf; constraint ((idx != 1 && idx != 0), _("index must be 0 or 1")); inst.operands[2].reg >>= 4; constraint (!(inst.operands[2].reg < 16), _("indexed register must be less than 16")); neon_three_args (rs == NS_QQS); inst.instruction |= (idx << 5); } else { inst.instruction |= (1 << 21); rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY); neon_three_args (rs == NS_QQQ); } } static void do_vsudot (void) { enum neon_shape rs; set_pred_insn_type (OUTSIDE_PRED_INSN); if (inst.operands[2].isscalar) { rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY); inst.instruction |= (1 << 25); int idx = inst.operands[2].reg & 0xf; constraint ((idx != 1 && idx != 0), _("index must be 0 or 1")); inst.operands[2].reg >>= 4; constraint (!(inst.operands[2].reg < 16), _("indexed register must be less than 16")); neon_three_args (rs == NS_QQS); inst.instruction |= (idx << 5); } } static void do_vsmmla (void) { enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY); set_pred_insn_type (OUTSIDE_PRED_INSN); neon_three_args (1); } static void do_vummla (void) { enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY); set_pred_insn_type (OUTSIDE_PRED_INSN); neon_three_args (1); } static void check_cde_operand (size_t idx, int is_dual) { unsigned Rx = inst.operands[idx].reg; bool isvec = inst.operands[idx].isvec; if (is_dual == 0 && thumb_mode) constraint ( !((Rx <= 14 && Rx != 13) || (Rx == REG_PC && isvec)), _("Register must be r0-r14 except r13, or APSR_nzcv.")); else constraint ( !((Rx <= 10 && Rx % 2 == 0 )), _("Register must be an even register between r0-r10.")); } static bool cde_coproc_enabled (unsigned coproc) { switch (coproc) { case 0: return mark_feature_used (&arm_ext_cde0); case 1: return mark_feature_used (&arm_ext_cde1); case 2: return mark_feature_used (&arm_ext_cde2); case 3: return mark_feature_used (&arm_ext_cde3); case 4: return mark_feature_used (&arm_ext_cde4); case 5: return mark_feature_used (&arm_ext_cde5); case 6: return mark_feature_used (&arm_ext_cde6); case 7: return mark_feature_used (&arm_ext_cde7); default: return false; } } #define cde_coproc_pos 8 static void cde_handle_coproc (void) { unsigned coproc = inst.operands[0].reg; constraint (coproc > 7, _("CDE Coprocessor must be in range 0-7")); constraint (!(cde_coproc_enabled (coproc)), BAD_CDE_COPROC); inst.instruction |= coproc << cde_coproc_pos; } #undef cde_coproc_pos static void cxn_handle_predication (bool is_accum) { if (is_accum && conditional_insn ()) set_pred_insn_type (INSIDE_IT_INSN); else if (conditional_insn ()) /* conditional_insn essentially checks for a suffix, not whether the instruction is inside an IT block or not. The non-accumulator versions should not have suffixes. */ inst.error = BAD_SYNTAX; else set_pred_insn_type (OUTSIDE_PRED_INSN); } static void do_custom_instruction_1 (int is_dual, bool is_accum) { constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE)); unsigned imm, Rd; Rd = inst.operands[1].reg; check_cde_operand (1, is_dual); if (is_dual == 1) { constraint (inst.operands[2].reg != Rd + 1, _("cx1d requires consecutive destination registers.")); imm = inst.operands[3].imm; } else if (is_dual == 0) imm = inst.operands[2].imm; else abort (); inst.instruction |= Rd << 12; inst.instruction |= (imm & 0x1F80) << 9; inst.instruction |= (imm & 0x0040) << 1; inst.instruction |= (imm & 0x003f); cde_handle_coproc (); cxn_handle_predication (is_accum); } static void do_custom_instruction_2 (int is_dual, bool is_accum) { constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE)); unsigned imm, Rd, Rn; Rd = inst.operands[1].reg; if (is_dual == 1) { constraint (inst.operands[2].reg != Rd + 1, _("cx2d requires consecutive destination registers.")); imm = inst.operands[4].imm; Rn = inst.operands[3].reg; } else if (is_dual == 0) { imm = inst.operands[3].imm; Rn = inst.operands[2].reg; } else abort (); check_cde_operand (2 + is_dual, /* is_dual = */0); check_cde_operand (1, is_dual); inst.instruction |= Rd << 12; inst.instruction |= Rn << 16; inst.instruction |= (imm & 0x0380) << 13; inst.instruction |= (imm & 0x0040) << 1; inst.instruction |= (imm & 0x003f); cde_handle_coproc (); cxn_handle_predication (is_accum); } static void do_custom_instruction_3 (int is_dual, bool is_accum) { constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE)); unsigned imm, Rd, Rn, Rm; Rd = inst.operands[1].reg; if (is_dual == 1) { constraint (inst.operands[2].reg != Rd + 1, _("cx3d requires consecutive destination registers.")); imm = inst.operands[5].imm; Rn = inst.operands[3].reg; Rm = inst.operands[4].reg; } else if (is_dual == 0) { imm = inst.operands[4].imm; Rn = inst.operands[2].reg; Rm = inst.operands[3].reg; } else abort (); check_cde_operand (1, is_dual); check_cde_operand (2 + is_dual, /* is_dual = */0); check_cde_operand (3 + is_dual, /* is_dual = */0); inst.instruction |= Rd; inst.instruction |= Rn << 16; inst.instruction |= Rm << 12; inst.instruction |= (imm & 0x0038) << 17; inst.instruction |= (imm & 0x0004) << 5; inst.instruction |= (imm & 0x0003) << 4; cde_handle_coproc (); cxn_handle_predication (is_accum); } static void do_cx1 (void) { return do_custom_instruction_1 (0, 0); } static void do_cx1a (void) { return do_custom_instruction_1 (0, 1); } static void do_cx1d (void) { return do_custom_instruction_1 (1, 0); } static void do_cx1da (void) { return do_custom_instruction_1 (1, 1); } static void do_cx2 (void) { return do_custom_instruction_2 (0, 0); } static void do_cx2a (void) { return do_custom_instruction_2 (0, 1); } static void do_cx2d (void) { return do_custom_instruction_2 (1, 0); } static void do_cx2da (void) { return do_custom_instruction_2 (1, 1); } static void do_cx3 (void) { return do_custom_instruction_3 (0, 0); } static void do_cx3a (void) { return do_custom_instruction_3 (0, 1); } static void do_cx3d (void) { return do_custom_instruction_3 (1, 0); } static void do_cx3da (void) { return do_custom_instruction_3 (1, 1); } static void vcx_assign_vec_d (unsigned regnum) { inst.instruction |= HI4 (regnum) << 12; inst.instruction |= LOW1 (regnum) << 22; } static void vcx_assign_vec_m (unsigned regnum) { inst.instruction |= HI4 (regnum); inst.instruction |= LOW1 (regnum) << 5; } static void vcx_assign_vec_n (unsigned regnum) { inst.instruction |= HI4 (regnum) << 16; inst.instruction |= LOW1 (regnum) << 7; } enum vcx_reg_type { q_reg, d_reg, s_reg }; static enum vcx_reg_type vcx_get_reg_type (enum neon_shape ns) { gas_assert (ns == NS_PQI || ns == NS_PDI || ns == NS_PFI || ns == NS_PQQI || ns == NS_PDDI || ns == NS_PFFI || ns == NS_PQQQI || ns == NS_PDDDI || ns == NS_PFFFI); if (ns == NS_PQI || ns == NS_PQQI || ns == NS_PQQQI) return q_reg; if (ns == NS_PDI || ns == NS_PDDI || ns == NS_PDDDI) return d_reg; return s_reg; } #define vcx_size_pos 24 #define vcx_vec_pos 6 static unsigned vcx_handle_shape (enum vcx_reg_type reg_type) { unsigned mult = 2; if (reg_type == q_reg) inst.instruction |= 1 << vcx_vec_pos; else if (reg_type == d_reg) inst.instruction |= 1 << vcx_size_pos; else mult = 1; /* NOTE: The documentation says that the Q registers are encoded as 2*N in the D:Vd bits (or equivalent for N and M registers). Similarly the D registers are encoded as N in D:Vd bits. While the S registers are encoded as N in the Vd:D bits. Taking into account the maximum values of these registers we can see a nicer pattern for calculation: Q -> 7, D -> 15, S -> 31 If we say that everything is encoded in the Vd:D bits, then we can say that Q is encoded as 4*N, and D is encoded as 2*N. This way the bits will end up the same, and calculation is simpler. (calculation is now: 1. Multiply by a number determined by the register letter. 2. Encode resulting number in Vd:D bits.) This is made a little more complicated by automatic handling of 'Q' registers elsewhere, which means the register number is already 2*N where N is the number the user wrote after the register letter. */ return mult; } #undef vcx_vec_pos #undef vcx_size_pos static void vcx_ensure_register_in_range (unsigned R, enum vcx_reg_type reg_type) { if (reg_type == q_reg) { gas_assert (R % 2 == 0); constraint (R >= 16, _("'q' register must be in range 0-7")); } else if (reg_type == d_reg) constraint (R >= 16, _("'d' register must be in range 0-15")); else constraint (R >= 32, _("'s' register must be in range 0-31")); } static void (*vcx_assign_vec[3]) (unsigned) = { vcx_assign_vec_d, vcx_assign_vec_m, vcx_assign_vec_n }; static void vcx_handle_register_arguments (unsigned num_registers, enum vcx_reg_type reg_type) { unsigned R, i; unsigned reg_mult = vcx_handle_shape (reg_type); for (i = 0; i < num_registers; i++) { R = inst.operands[i+1].reg; vcx_ensure_register_in_range (R, reg_type); if (num_registers == 3 && i > 0) { if (i == 2) vcx_assign_vec[1] (R * reg_mult); else vcx_assign_vec[2] (R * reg_mult); continue; } vcx_assign_vec[i](R * reg_mult); } } static void vcx_handle_insn_block (enum vcx_reg_type reg_type) { if (reg_type == q_reg) if (inst.cond > COND_ALWAYS) inst.pred_insn_type = INSIDE_VPT_INSN; else inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN; else if (inst.cond == COND_ALWAYS) inst.pred_insn_type = OUTSIDE_PRED_INSN; else inst.error = BAD_NOT_IT; } static void vcx_handle_common_checks (unsigned num_args, enum neon_shape rs) { constraint (!mark_feature_used (&arm_ext_cde), _(BAD_CDE)); cde_handle_coproc (); enum vcx_reg_type reg_type = vcx_get_reg_type (rs); vcx_handle_register_arguments (num_args, reg_type); vcx_handle_insn_block (reg_type); if (reg_type == q_reg) constraint (!mark_feature_used (&mve_ext), _("vcx instructions with Q registers require MVE")); else constraint (!(ARM_FSET_CPU_SUBSET (armv8m_fp, cpu_variant) && mark_feature_used (&armv8m_fp)) && !mark_feature_used (&mve_ext), _("vcx instructions with S or D registers require either MVE" " or Armv8-M floating point extension.")); } static void do_vcx1 (void) { enum neon_shape rs = neon_select_shape (NS_PQI, NS_PDI, NS_PFI, NS_NULL); vcx_handle_common_checks (1, rs); unsigned imm = inst.operands[2].imm; inst.instruction |= (imm & 0x03f); inst.instruction |= (imm & 0x040) << 1; inst.instruction |= (imm & 0x780) << 9; if (rs != NS_PQI) constraint (imm >= 2048, _("vcx1 with S or D registers takes immediate within 0-2047")); inst.instruction |= (imm & 0x800) << 13; } static void do_vcx2 (void) { enum neon_shape rs = neon_select_shape (NS_PQQI, NS_PDDI, NS_PFFI, NS_NULL); vcx_handle_common_checks (2, rs); unsigned imm = inst.operands[3].imm; inst.instruction |= (imm & 0x01) << 4; inst.instruction |= (imm & 0x02) << 6; inst.instruction |= (imm & 0x3c) << 14; if (rs != NS_PQQI) constraint (imm >= 64, _("vcx2 with S or D registers takes immediate within 0-63")); inst.instruction |= (imm & 0x40) << 18; } static void do_vcx3 (void) { enum neon_shape rs = neon_select_shape (NS_PQQQI, NS_PDDDI, NS_PFFFI, NS_NULL); vcx_handle_common_checks (3, rs); unsigned imm = inst.operands[4].imm; inst.instruction |= (imm & 0x1) << 4; inst.instruction |= (imm & 0x6) << 19; if (rs != NS_PQQQI) constraint (imm >= 8, _("vcx2 with S or D registers takes immediate within 0-7")); inst.instruction |= (imm & 0x8) << 21; } /* Crypto v1 instructions. */ static void do_crypto_2op_1 (unsigned elttype, int op) { set_pred_insn_type (OUTSIDE_PRED_INSN); if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type == NT_invtype) return; inst.error = NULL; NEON_ENCODE (INTEGER, inst); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; if (op != -1) inst.instruction |= op << 6; if (thumb_mode) inst.instruction |= 0xfc000000; else inst.instruction |= 0xf0000000; } static void do_crypto_3op_1 (int u, int op) { set_pred_insn_type (OUTSIDE_PRED_INSN); if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT, N_32 | N_UNT | N_KEY).type == NT_invtype) return; inst.error = NULL; NEON_ENCODE (INTEGER, inst); neon_three_same (1, u, 8 << op); } static void do_aese (void) { do_crypto_2op_1 (N_8, 0); } static void do_aesd (void) { do_crypto_2op_1 (N_8, 1); } static void do_aesmc (void) { do_crypto_2op_1 (N_8, 2); } static void do_aesimc (void) { do_crypto_2op_1 (N_8, 3); } static void do_sha1c (void) { do_crypto_3op_1 (0, 0); } static void do_sha1p (void) { do_crypto_3op_1 (0, 1); } static void do_sha1m (void) { do_crypto_3op_1 (0, 2); } static void do_sha1su0 (void) { do_crypto_3op_1 (0, 3); } static void do_sha256h (void) { do_crypto_3op_1 (1, 0); } static void do_sha256h2 (void) { do_crypto_3op_1 (1, 1); } static void do_sha256su1 (void) { do_crypto_3op_1 (1, 2); } static void do_sha1h (void) { do_crypto_2op_1 (N_32, -1); } static void do_sha1su1 (void) { do_crypto_2op_1 (N_32, 0); } static void do_sha256su0 (void) { do_crypto_2op_1 (N_32, 1); } static void do_crc32_1 (unsigned int poly, unsigned int sz) { unsigned int Rd = inst.operands[0].reg; unsigned int Rn = inst.operands[1].reg; unsigned int Rm = inst.operands[2].reg; set_pred_insn_type (OUTSIDE_PRED_INSN); inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12); inst.instruction |= LOW4 (Rn) << 16; inst.instruction |= LOW4 (Rm); inst.instruction |= sz << (thumb_mode ? 4 : 21); inst.instruction |= poly << (thumb_mode ? 20 : 9); if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC) as_warn (UNPRED_REG ("r15")); } static void do_crc32b (void) { do_crc32_1 (0, 0); } static void do_crc32h (void) { do_crc32_1 (0, 1); } static void do_crc32w (void) { do_crc32_1 (0, 2); } static void do_crc32cb (void) { do_crc32_1 (1, 0); } static void do_crc32ch (void) { do_crc32_1 (1, 1); } static void do_crc32cw (void) { do_crc32_1 (1, 2); } static void do_vjcvt (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8), _(BAD_FPU)); neon_check_type (2, NS_FD, N_S32, N_F64); do_vfp_sp_dp_cvt (); do_vfp_cond_or_thumb (); } static void do_vdot (void) { enum neon_shape rs; constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU)); set_pred_insn_type (OUTSIDE_PRED_INSN); if (inst.operands[2].isscalar) { rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY); inst.instruction |= (1 << 25); int idx = inst.operands[2].reg & 0xf; constraint ((idx != 1 && idx != 0), _("index must be 0 or 1")); inst.operands[2].reg >>= 4; constraint (!(inst.operands[2].reg < 16), _("indexed register must be less than 16")); neon_three_args (rs == NS_QQS); inst.instruction |= (idx << 5); } else { rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY); neon_three_args (rs == NS_QQQ); } } static void do_vmmla (void) { enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY); constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU)); set_pred_insn_type (OUTSIDE_PRED_INSN); neon_three_args (1); } static void do_t_pacbti (void) { inst.instruction = THUMB_OP32 (inst.instruction); } static void do_t_pacbti_nonop (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, pacbti_ext), _(BAD_PACBTI)); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_t_pacbti_pacg (void) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, pacbti_ext), _(BAD_PACBTI)); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } /* Overall per-instruction processing. */ /* We need to be able to fix up arbitrary expressions in some statements. This is so that we can handle symbols that are an arbitrary distance from the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask), which returns part of an address in a form which will be valid for a data instruction. We do this by pushing the expression into a symbol in the expr_section, and creating a fix for that. */ static void fix_new_arm (fragS * frag, int where, short int size, expressionS * exp, int pc_rel, int reloc) { fixS * new_fix; switch (exp->X_op) { case O_constant: if (pc_rel) { /* Create an absolute valued symbol, so we have something to refer to in the object file. Unfortunately for us, gas's generic expression parsing will already have folded out any use of .set foo/.type foo %function that may have been used to set type information of the target location, that's being specified symbolically. We have to presume the user knows what they are doing. */ char name[16 + 8]; symbolS *symbol; sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number); symbol = symbol_find_or_make (name); S_SET_SEGMENT (symbol, absolute_section); symbol_set_frag (symbol, &zero_address_frag); S_SET_VALUE (symbol, exp->X_add_number); exp->X_op = O_symbol; exp->X_add_symbol = symbol; exp->X_add_number = 0; } /* FALLTHROUGH */ case O_symbol: case O_add: case O_subtract: new_fix = fix_new_exp (frag, where, size, exp, pc_rel, (enum bfd_reloc_code_real) reloc); break; default: new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0, pc_rel, (enum bfd_reloc_code_real) reloc); break; } /* Mark whether the fix is to a THUMB instruction, or an ARM instruction. */ new_fix->tc_fix_data = thumb_mode; } /* Create a frg for an instruction requiring relaxation. */ static void output_relax_insn (void) { char * to; symbolS *sym; int offset; /* The size of the instruction is unknown, so tie the debug info to the start of the instruction. */ dwarf2_emit_insn (0); switch (inst.relocs[0].exp.X_op) { case O_symbol: sym = inst.relocs[0].exp.X_add_symbol; offset = inst.relocs[0].exp.X_add_number; break; case O_constant: sym = NULL; offset = inst.relocs[0].exp.X_add_number; break; default: sym = make_expr_symbol (&inst.relocs[0].exp); offset = 0; break; } to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE, inst.relax, sym, offset, NULL/*offset, opcode*/); md_number_to_chars (to, inst.instruction, THUMB_SIZE); } /* Write a 32-bit thumb instruction to buf. */ static void put_thumb32_insn (char * buf, unsigned long insn) { md_number_to_chars (buf, insn >> 16, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE); } static void output_inst (const char * str) { char * to = NULL; if (inst.error) { as_bad ("%s -- `%s'", inst.error, str); return; } if (inst.relax) { output_relax_insn (); return; } if (inst.size == 0) return; to = frag_more (inst.size); /* PR 9814: Record the thumb mode into the current frag so that we know what type of NOP padding to use, if necessary. We override any previous setting so that if the mode has changed then the NOPS that we use will match the encoding of the last instruction in the frag. */ frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED; if (thumb_mode && (inst.size > THUMB_SIZE)) { gas_assert (inst.size == (2 * THUMB_SIZE)); put_thumb32_insn (to, inst.instruction); } else if (inst.size > INSN_SIZE) { gas_assert (inst.size == (2 * INSN_SIZE)); md_number_to_chars (to, inst.instruction, INSN_SIZE); md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE); } else md_number_to_chars (to, inst.instruction, inst.size); int r; for (r = 0; r < ARM_IT_MAX_RELOCS; r++) { if (inst.relocs[r].type != BFD_RELOC_UNUSED) fix_new_arm (frag_now, to - frag_now->fr_literal, inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel, inst.relocs[r].type); } dwarf2_emit_insn (inst.size); } static char * output_it_inst (int cond, int mask, char * to) { unsigned long instruction = 0xbf00; mask &= 0xf; instruction |= mask; instruction |= cond << 4; if (to == NULL) { to = frag_more (2); #ifdef OBJ_ELF dwarf2_emit_insn (2); #endif } md_number_to_chars (to, instruction, 2); return to; } /* Tag values used in struct asm_opcode's tag field. */ enum opcode_tag { OT_unconditional, /* Instruction cannot be conditionalized. The ARM condition field is still 0xE. */ OT_unconditionalF, /* Instruction cannot be conditionalized and carries 0xF in its ARM condition field. */ OT_csuffix, /* Instruction takes a conditional suffix. */ OT_csuffixF, /* Some forms of the instruction take a scalar conditional suffix, others place 0xF where the condition field would be, others take a vector conditional suffix. */ OT_cinfix3, /* Instruction takes a conditional infix, beginning at character index 3. (In unified mode, it becomes a suffix.) */ OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for tsts, cmps, cmns, and teqs. */ OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at character index 3, even in unified mode. Used for legacy instructions where suffix and infix forms may be ambiguous. */ OT_csuf_or_in3, /* Instruction takes either a conditional suffix or an infix at character index 3. */ OT_odd_infix_unc, /* This is the unconditional variant of an instruction that takes a conditional infix at an unusual position. In unified mode, this variant will accept a suffix. */ OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0 are the conditional variants of instructions that take conditional infixes in unusual positions. The infix appears at character index (tag - OT_odd_infix_0). These are not accepted in unified mode. */ }; /* Subroutine of md_assemble, responsible for looking up the primary opcode from the mnemonic the user wrote. STR points to the beginning of the mnemonic. This is not simply a hash table lookup, because of conditional variants. Most instructions have conditional variants, which are expressed with a _conditional affix_ to the mnemonic. If we were to encode each conditional variant as a literal string in the opcode table, it would have approximately 20,000 entries. Most mnemonics take this affix as a suffix, and in unified syntax, 'most' is upgraded to 'all'. However, in the divided syntax, some instructions take the affix as an infix, notably the s-variants of the arithmetic instructions. Of those instructions, all but six have the infix appear after the third character of the mnemonic. Accordingly, the algorithm for looking up primary opcodes given an identifier is: 1. Look up the identifier in the opcode table. If we find a match, go to step U. 2. Look up the last two characters of the identifier in the conditions table. If we find a match, look up the first N-2 characters of the identifier in the opcode table. If we find a match, go to step CE. 3. Look up the fourth and fifth characters of the identifier in the conditions table. If we find a match, extract those characters from the identifier, and look up the remaining characters in the opcode table. If we find a match, go to step CM. 4. Fail. U. Examine the tag field of the opcode structure, in case this is one of the six instructions with its conditional infix in an unusual place. If it is, the tag tells us where to find the infix; look it up in the conditions table and set inst.cond accordingly. Otherwise, this is an unconditional instruction. Again set inst.cond accordingly. Return the opcode structure. CE. Examine the tag field to make sure this is an instruction that should receive a conditional suffix. If it is not, fail. Otherwise, set inst.cond from the suffix we already looked up, and return the opcode structure. CM. Examine the tag field to make sure this is an instruction that should receive a conditional infix after the third character. If it is not, fail. Otherwise, undo the edits to the current line of input and proceed as for case CE. */ static const struct asm_opcode * opcode_lookup (char **str) { char *end, *base; char *affix; const struct asm_opcode *opcode; const struct asm_cond *cond; char save[2]; /* Scan up to the end of the mnemonic, which must end in white space, '.' (in unified mode, or for Neon/VFP instructions), or end of string. */ for (base = end = *str; *end != '\0'; end++) if (*end == ' ' || *end == '.') break; if (end == base) return NULL; /* Handle a possible width suffix and/or Neon type suffix. */ if (end[0] == '.') { int offset = 2; /* The .w and .n suffixes are only valid if the unified syntax is in use. */ if (unified_syntax && end[1] == 'w') inst.size_req = 4; else if (unified_syntax && end[1] == 'n') inst.size_req = 2; else offset = 0; inst.vectype.elems = 0; *str = end + offset; if (end[offset] == '.') { /* See if we have a Neon type suffix (possible in either unified or non-unified ARM syntax mode). */ if (parse_neon_type (&inst.vectype, str) == FAIL) return NULL; } else if (end[offset] != '\0' && end[offset] != ' ') return NULL; } else *str = end; /* Look for unaffixed or special-case affixed mnemonic. */ opcode = (const struct asm_opcode *) str_hash_find_n (arm_ops_hsh, base, end - base); cond = NULL; if (opcode) { /* step U */ if (opcode->tag < OT_odd_infix_0) { inst.cond = COND_ALWAYS; return opcode; } if (warn_on_deprecated && unified_syntax) as_tsktsk (_("conditional infixes are deprecated in unified syntax")); affix = base + (opcode->tag - OT_odd_infix_0); cond = (const struct asm_cond *) str_hash_find_n (arm_cond_hsh, affix, 2); gas_assert (cond); inst.cond = cond->value; return opcode; } if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) { /* Cannot have a conditional suffix on a mnemonic of less than a character. */ if (end - base < 2) return NULL; affix = end - 1; cond = (const struct asm_cond *) str_hash_find_n (arm_vcond_hsh, affix, 1); opcode = (const struct asm_opcode *) str_hash_find_n (arm_ops_hsh, base, affix - base); /* A known edge case is a conflict between an 'e' as a suffix for an Else of a VPT predication block and an 'ne' suffix for an IT block. If we detect that edge case here and we are not in a VPT VECTOR_PRED block, reset opcode and cond, so that the 'ne' case can be detected in the next section for 2-character conditional suffixes. An example where this is a problem is between the MVE 'vcvtn' and the non-MVE 'vcvt' instructions. */ if (cond && opcode && cond->template_name[0] == 'e' && opcode->template_name[affix - base - 1] == 'n' && now_pred.type != VECTOR_PRED) { opcode = NULL; cond = NULL; } /* If this opcode can not be vector predicated then don't accept it with a vector predication code. */ if (opcode && !opcode->mayBeVecPred) opcode = NULL; } if (!opcode || !cond) { /* Cannot have a conditional suffix on a mnemonic of less than two characters. */ if (end - base < 3) return NULL; /* Look for suffixed mnemonic. */ affix = end - 2; cond = (const struct asm_cond *) str_hash_find_n (arm_cond_hsh, affix, 2); opcode = (const struct asm_opcode *) str_hash_find_n (arm_ops_hsh, base, affix - base); } if (opcode && cond) { /* step CE */ switch (opcode->tag) { case OT_cinfix3_legacy: /* Ignore conditional suffixes matched on infix only mnemonics. */ break; case OT_cinfix3: case OT_cinfix3_deprecated: case OT_odd_infix_unc: if (!unified_syntax) return NULL; /* Fall through. */ case OT_csuffix: case OT_csuffixF: case OT_csuf_or_in3: inst.cond = cond->value; return opcode; case OT_unconditional: case OT_unconditionalF: if (thumb_mode) inst.cond = cond->value; else { /* Delayed diagnostic. */ inst.error = BAD_COND; inst.cond = COND_ALWAYS; } return opcode; default: return NULL; } } /* Cannot have a usual-position infix on a mnemonic of less than six characters (five would be a suffix). */ if (end - base < 6) return NULL; /* Look for infixed mnemonic in the usual position. */ affix = base + 3; cond = (const struct asm_cond *) str_hash_find_n (arm_cond_hsh, affix, 2); if (!cond) return NULL; memcpy (save, affix, 2); memmove (affix, affix + 2, (end - affix) - 2); opcode = (const struct asm_opcode *) str_hash_find_n (arm_ops_hsh, base, (end - base) - 2); memmove (affix + 2, affix, (end - affix) - 2); memcpy (affix, save, 2); if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_cinfix3_deprecated || opcode->tag == OT_csuf_or_in3 || opcode->tag == OT_cinfix3_legacy)) { /* Step CM. */ if (warn_on_deprecated && unified_syntax && (opcode->tag == OT_cinfix3 || opcode->tag == OT_cinfix3_deprecated)) as_tsktsk (_("conditional infixes are deprecated in unified syntax")); inst.cond = cond->value; return opcode; } return NULL; } /* This function generates an initial IT instruction, leaving its block virtually open for the new instructions. Eventually, the mask will be updated by now_pred_add_mask () each time a new instruction needs to be included in the IT block. Finally, the block is closed with close_automatic_it_block (). The block closure can be requested either from md_assemble (), a tencode (), or due to a label hook. */ static void new_automatic_it_block (int cond) { now_pred.state = AUTOMATIC_PRED_BLOCK; now_pred.mask = 0x18; now_pred.cc = cond; now_pred.block_length = 1; mapping_state (MAP_THUMB); now_pred.insn = output_it_inst (cond, now_pred.mask, NULL); now_pred.warn_deprecated = false; now_pred.insn_cond = true; } /* Close an automatic IT block. See comments in new_automatic_it_block (). */ static void close_automatic_it_block (void) { now_pred.mask = 0x10; now_pred.block_length = 0; } /* Update the mask of the current automatically-generated IT instruction. See comments in new_automatic_it_block (). */ static void now_pred_add_mask (int cond) { #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit))) #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \ | ((bitvalue) << (nbit))) const int resulting_bit = (cond & 1); now_pred.mask &= 0xf; now_pred.mask = SET_BIT_VALUE (now_pred.mask, resulting_bit, (5 - now_pred.block_length)); now_pred.mask = SET_BIT_VALUE (now_pred.mask, 1, ((5 - now_pred.block_length) - 1)); output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn); #undef CLEAR_BIT #undef SET_BIT_VALUE } /* The IT blocks handling machinery is accessed through the these functions: it_fsm_pre_encode () from md_assemble () set_pred_insn_type () optional, from the tencode functions set_pred_insn_type_last () ditto in_pred_block () ditto it_fsm_post_encode () from md_assemble () force_automatic_it_block_close () from label handling functions Rationale: 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (), initializing the IT insn type with a generic initial value depending on the inst.condition. 2) During the tencode function, two things may happen: a) The tencode function overrides the IT insn type by calling either set_pred_insn_type (type) or set_pred_insn_type_last (). b) The tencode function queries the IT block state by calling in_pred_block () (i.e. to determine narrow/not narrow mode). Both set_pred_insn_type and in_pred_block run the internal FSM state handling function (handle_pred_state), because: a) setting the IT insn type may incur in an invalid state (exiting the function), and b) querying the state requires the FSM to be updated. Specifically we want to avoid creating an IT block for conditional branches, so it_fsm_pre_encode is actually a guess and we can't determine whether an IT block is required until the tencode () routine has decided what type of instruction this actually it. Because of this, if set_pred_insn_type and in_pred_block have to be used, set_pred_insn_type has to be called first. set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type), that determines the insn IT type depending on the inst.cond code. When a tencode () routine encodes an instruction that can be either outside an IT block, or, in the case of being inside, has to be the last one, set_pred_insn_type_last () will determine the proper IT instruction type based on the inst.cond code. Otherwise, set_pred_insn_type can be called for overriding that logic or for covering other cases. Calling handle_pred_state () may not transition the IT block state to OUTSIDE_PRED_BLOCK immediately, since the (current) state could be still queried. Instead, if the FSM determines that the state should be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed after the tencode () function: that's what it_fsm_post_encode () does. Since in_pred_block () calls the state handling function to get an updated state, an error may occur (due to invalid insns combination). In that case, inst.error is set. Therefore, inst.error has to be checked after the execution of the tencode () routine. 3) Back in md_assemble(), it_fsm_post_encode () is called to commit any pending state change (if any) that didn't take place in handle_pred_state () as explained above. */ static void it_fsm_pre_encode (void) { if (inst.cond != COND_ALWAYS) inst.pred_insn_type = INSIDE_IT_INSN; else inst.pred_insn_type = OUTSIDE_PRED_INSN; now_pred.state_handled = 0; } /* IT state FSM handling function. */ /* MVE instructions and non-MVE instructions are handled differently because of the introduction of VPT blocks. Specifications say that any non-MVE instruction inside a VPT block is UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE instructions are deemed to be UNPREDICTABLE if inside an IT block. For the few exceptions we have MVE_UNPREDICABLE_INSN. The error messages provided depending on the different combinations possible are described in the cases below: For 'most' MVE instructions: 1) In an IT block, with an IT code: syntax error 2) In an IT block, with a VPT code: error: must be in a VPT block 3) In an IT block, with no code: warning: UNPREDICTABLE 4) In a VPT block, with an IT code: syntax error 5) In a VPT block, with a VPT code: OK! 6) In a VPT block, with no code: error: missing code 7) Outside a pred block, with an IT code: error: syntax error 8) Outside a pred block, with a VPT code: error: should be in a VPT block 9) Outside a pred block, with no code: OK! For non-MVE instructions: 10) In an IT block, with an IT code: OK! 11) In an IT block, with a VPT code: syntax error 12) In an IT block, with no code: error: missing code 13) In a VPT block, with an IT code: error: should be in an IT block 14) In a VPT block, with a VPT code: syntax error 15) In a VPT block, with no code: UNPREDICTABLE 16) Outside a pred block, with an IT code: error: should be in an IT block 17) Outside a pred block, with a VPT code: syntax error 18) Outside a pred block, with no code: OK! */ static int handle_pred_state (void) { now_pred.state_handled = 1; now_pred.insn_cond = false; switch (now_pred.state) { case OUTSIDE_PRED_BLOCK: switch (inst.pred_insn_type) { case MVE_UNPREDICABLE_INSN: case MVE_OUTSIDE_PRED_INSN: if (inst.cond < COND_ALWAYS) { /* Case 7: Outside a pred block, with an IT code: error: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } /* Case 9: Outside a pred block, with no code: OK! */ break; case OUTSIDE_PRED_INSN: if (inst.cond > COND_ALWAYS) { /* Case 17: Outside a pred block, with a VPT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } /* Case 18: Outside a pred block, with no code: OK! */ break; case INSIDE_VPT_INSN: /* Case 8: Outside a pred block, with a VPT code: error: should be in a VPT block. */ inst.error = BAD_OUT_VPT; return FAIL; case INSIDE_IT_INSN: case INSIDE_IT_LAST_INSN: if (inst.cond < COND_ALWAYS) { /* Case 16: Outside a pred block, with an IT code: error: should be in an IT block. */ if (thumb_mode == 0) { if (unified_syntax && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM)) as_tsktsk (_("Warning: conditional outside an IT block"\ " for Thumb.")); } else { if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB) && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)) { /* Automatically generate the IT instruction. */ new_automatic_it_block (inst.cond); if (inst.pred_insn_type == INSIDE_IT_LAST_INSN) close_automatic_it_block (); } else { inst.error = BAD_OUT_IT; return FAIL; } } break; } else if (inst.cond > COND_ALWAYS) { /* Case 17: Outside a pred block, with a VPT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else gas_assert (0); case IF_INSIDE_IT_LAST_INSN: case NEUTRAL_IT_INSN: break; case VPT_INSN: if (inst.cond != COND_ALWAYS) first_error (BAD_SYNTAX); now_pred.state = MANUAL_PRED_BLOCK; now_pred.block_length = 0; now_pred.type = VECTOR_PRED; now_pred.cc = 0; break; case IT_INSN: now_pred.state = MANUAL_PRED_BLOCK; now_pred.block_length = 0; now_pred.type = SCALAR_PRED; break; } break; case AUTOMATIC_PRED_BLOCK: /* Three things may happen now: a) We should increment current it block size; b) We should close current it block (closing insn or 4 insns); c) We should close current it block and start a new one (due to incompatible conditions or 4 insns-length block reached). */ switch (inst.pred_insn_type) { case INSIDE_VPT_INSN: case VPT_INSN: case MVE_UNPREDICABLE_INSN: case MVE_OUTSIDE_PRED_INSN: gas_assert (0); case OUTSIDE_PRED_INSN: /* The closure of the block shall happen immediately, so any in_pred_block () call reports the block as closed. */ force_automatic_it_block_close (); break; case INSIDE_IT_INSN: case INSIDE_IT_LAST_INSN: case IF_INSIDE_IT_LAST_INSN: now_pred.block_length++; if (now_pred.block_length > 4 || !now_pred_compatible (inst.cond)) { force_automatic_it_block_close (); if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN) new_automatic_it_block (inst.cond); } else { now_pred.insn_cond = true; now_pred_add_mask (inst.cond); } if (now_pred.state == AUTOMATIC_PRED_BLOCK && (inst.pred_insn_type == INSIDE_IT_LAST_INSN || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN)) close_automatic_it_block (); break; /* Fallthrough. */ case NEUTRAL_IT_INSN: now_pred.block_length++; now_pred.insn_cond = true; if (now_pred.block_length > 4) force_automatic_it_block_close (); else now_pred_add_mask (now_pred.cc & 1); break; case IT_INSN: close_automatic_it_block (); now_pred.state = MANUAL_PRED_BLOCK; break; } break; case MANUAL_PRED_BLOCK: { unsigned int cond; int is_last; if (now_pred.type == SCALAR_PRED) { /* Check conditional suffixes. */ cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1; now_pred.mask <<= 1; now_pred.mask &= 0x1f; is_last = (now_pred.mask == 0x10); } else { now_pred.cc ^= (now_pred.mask >> 4); cond = now_pred.cc + 0xf; now_pred.mask <<= 1; now_pred.mask &= 0x1f; is_last = now_pred.mask == 0x10; } now_pred.insn_cond = true; switch (inst.pred_insn_type) { case OUTSIDE_PRED_INSN: if (now_pred.type == SCALAR_PRED) { if (inst.cond == COND_ALWAYS) { /* Case 12: In an IT block, with no code: error: missing code. */ inst.error = BAD_NOT_IT; return FAIL; } else if (inst.cond > COND_ALWAYS) { /* Case 11: In an IT block, with a VPT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else if (thumb_mode) { /* This is for some special cases where a non-MVE instruction is not allowed in an IT block, such as cbz, but are put into one with a condition code. You could argue this should be a syntax error, but we gave the 'not allowed in IT block' diagnostic in the past so we will keep doing so. */ inst.error = BAD_NOT_IT; return FAIL; } break; } else { /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */ as_tsktsk (MVE_NOT_VPT); return SUCCESS; } case MVE_OUTSIDE_PRED_INSN: if (now_pred.type == SCALAR_PRED) { if (inst.cond == COND_ALWAYS) { /* Case 3: In an IT block, with no code: warning: UNPREDICTABLE. */ as_tsktsk (MVE_NOT_IT); return SUCCESS; } else if (inst.cond < COND_ALWAYS) { /* Case 1: In an IT block, with an IT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else gas_assert (0); } else { if (inst.cond < COND_ALWAYS) { /* Case 4: In a VPT block, with an IT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else if (inst.cond == COND_ALWAYS) { /* Case 6: In a VPT block, with no code: error: missing code. */ inst.error = BAD_NOT_VPT; return FAIL; } else { gas_assert (0); } } case MVE_UNPREDICABLE_INSN: as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT); return SUCCESS; case INSIDE_IT_INSN: if (inst.cond > COND_ALWAYS) { /* Case 11: In an IT block, with a VPT code: syntax error. */ /* Case 14: In a VPT block, with a VPT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else if (now_pred.type == SCALAR_PRED) { /* Case 10: In an IT block, with an IT code: OK! */ if (cond != inst.cond) { inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND : BAD_VPT_COND; return FAIL; } } else { /* Case 13: In a VPT block, with an IT code: error: should be in an IT block. */ inst.error = BAD_OUT_IT; return FAIL; } break; case INSIDE_VPT_INSN: if (now_pred.type == SCALAR_PRED) { /* Case 2: In an IT block, with a VPT code: error: must be in a VPT block. */ inst.error = BAD_OUT_VPT; return FAIL; } /* Case 5: In a VPT block, with a VPT code: OK! */ else if (cond != inst.cond) { inst.error = BAD_VPT_COND; return FAIL; } break; case INSIDE_IT_LAST_INSN: case IF_INSIDE_IT_LAST_INSN: if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS) { /* Case 4: In a VPT block, with an IT code: syntax error. */ /* Case 11: In an IT block, with a VPT code: syntax error. */ inst.error = BAD_SYNTAX; return FAIL; } else if (cond != inst.cond) { inst.error = BAD_IT_COND; return FAIL; } if (!is_last) { inst.error = BAD_BRANCH; return FAIL; } break; case NEUTRAL_IT_INSN: /* The BKPT instruction is unconditional even in a IT or VPT block. */ break; case IT_INSN: if (now_pred.type == SCALAR_PRED) { inst.error = BAD_IT_IT; return FAIL; } /* fall through. */ case VPT_INSN: if (inst.cond == COND_ALWAYS) { /* Executing a VPT/VPST instruction inside an IT block or a VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE. */ if (now_pred.type == SCALAR_PRED) as_tsktsk (MVE_NOT_IT); else as_tsktsk (MVE_NOT_VPT); return SUCCESS; } else { /* VPT/VPST do not accept condition codes. */ inst.error = BAD_SYNTAX; return FAIL; } } } break; } return SUCCESS; } struct depr_insn_mask { unsigned long pattern; unsigned long mask; const char* description; }; /* List of 16-bit instruction patterns deprecated in an IT block in ARMv8. */ static const struct depr_insn_mask depr_it_insns[] = { { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") }, { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") }, { 0xa000, 0xb800, N_("ADR") }, { 0x4800, 0xf800, N_("Literal loads") }, { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") }, { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") }, /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue' field in asm_opcode. 'tvalue' is used at the stage this check happen. */ { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") }, { 0, 0, NULL } }; static void it_fsm_post_encode (void) { int is_last; if (!now_pred.state_handled) handle_pred_state (); if (now_pred.insn_cond && warn_on_restrict_it && !now_pred.warn_deprecated && warn_on_deprecated && (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8) || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8r)) && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m)) { if (inst.instruction >= 0x10000) { as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are " "performance deprecated in ARMv8-A and ARMv8-R")); now_pred.warn_deprecated = true; } else { const struct depr_insn_mask *p = depr_it_insns; while (p->mask != 0) { if ((inst.instruction & p->mask) == p->pattern) { as_tsktsk (_("IT blocks containing 16-bit Thumb " "instructions of the following class are " "performance deprecated in ARMv8-A and " "ARMv8-R: %s"), p->description); now_pred.warn_deprecated = true; break; } ++p; } } if (now_pred.block_length > 1) { as_tsktsk (_("IT blocks containing more than one conditional " "instruction are performance deprecated in ARMv8-A and " "ARMv8-R")); now_pred.warn_deprecated = true; } } is_last = (now_pred.mask == 0x10); if (is_last) { now_pred.state = OUTSIDE_PRED_BLOCK; now_pred.mask = 0; } } static void force_automatic_it_block_close (void) { if (now_pred.state == AUTOMATIC_PRED_BLOCK) { close_automatic_it_block (); now_pred.state = OUTSIDE_PRED_BLOCK; now_pred.mask = 0; } } static int in_pred_block (void) { if (!now_pred.state_handled) handle_pred_state (); return now_pred.state != OUTSIDE_PRED_BLOCK; } /* Whether OPCODE only has T32 encoding. Since this function is only used by t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed here, hence the "known" in the function name. */ static bool known_t32_only_insn (const struct asm_opcode *opcode) { /* Original Thumb-1 wide instruction. */ if (opcode->tencode == do_t_blx || opcode->tencode == do_t_branch23 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr) || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)) return true; /* Wide-only instruction added to ARMv8-M Baseline. */ if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only) || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics) || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m) || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div)) return true; return false; } /* Whether wide instruction variant can be used if available for a valid OPCODE in ARCH. */ static bool t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode) { if (known_t32_only_insn (opcode)) return true; /* Instruction with narrow and wide encoding added to ARMv8-M. Availability of variant T3 of B.W is checked in do_t_branch. */ if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m) && opcode->tencode == do_t_branch) return true; /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */ if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m) && opcode->tencode == do_t_mov_cmp /* Make sure CMP instruction is not affected. */ && opcode->aencode == do_mov) return true; /* Wide instruction variants of all instructions with narrow *and* wide variants become available with ARMv6t2. Other opcodes are either narrow-only or wide-only and are thus available if OPCODE is valid. */ if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2)) return true; /* OPCODE with narrow only instruction variant or wide variant not available. */ return false; } void md_assemble (char *str) { char *p = str; const struct asm_opcode * opcode; /* Align the previous label if needed. */ if (last_label_seen != NULL) { symbol_set_frag (last_label_seen, frag_now); S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ()); S_SET_SEGMENT (last_label_seen, now_seg); } memset (&inst, '\0', sizeof (inst)); int r; for (r = 0; r < ARM_IT_MAX_RELOCS; r++) inst.relocs[r].type = BFD_RELOC_UNUSED; opcode = opcode_lookup (&p); if (!opcode) { /* It wasn't an instruction, but it might be a register alias of the form alias .req reg, or a Neon .dn/.qn directive. */ if (! create_register_alias (str, p) && ! create_neon_reg_alias (str, p)) as_bad (_("bad instruction `%s'"), str); return; } if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated) as_tsktsk (_("s suffix on comparison instruction is deprecated")); /* The value which unconditional instructions should have in place of the condition field. */ inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1u; if (thumb_mode) { arm_feature_set variant; variant = cpu_variant; /* Only allow coprocessor instructions on Thumb-2 capable devices. */ if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2)) ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard); /* Check that this instruction is supported for this CPU. */ if (!opcode->tvariant || (thumb_mode == 1 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant))) { if (opcode->tencode == do_t_swi) as_bad (_("SVC is not permitted on this architecture")); else as_bad (_("selected processor does not support `%s' in Thumb mode"), str); return; } if (inst.cond != COND_ALWAYS && !unified_syntax && opcode->tencode != do_t_branch) { as_bad (_("Thumb does not support conditional execution")); return; } /* Two things are addressed here: 1) Implicit require narrow instructions on Thumb-1. This avoids relaxation accidentally introducing Thumb-2 instructions. 2) Reject wide instructions in non Thumb-2 cores. Only instructions with narrow and wide variants need to be handled but selecting all non wide-only instructions is easier. */ if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !t32_insn_ok (variant, opcode)) { if (inst.size_req == 0) inst.size_req = 2; else if (inst.size_req == 4) { if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m)) as_bad (_("selected processor does not support 32bit wide " "variant of instruction `%s'"), str); else as_bad (_("selected processor does not support `%s' in " "Thumb-2 mode"), str); return; } } inst.instruction = opcode->tvalue; if (!parse_operands (p, opcode->operands, /*thumb=*/true)) { /* Prepare the pred_insn_type for those encodings that don't set it. */ it_fsm_pre_encode (); opcode->tencode (); it_fsm_post_encode (); } if (!(inst.error || inst.relax)) { gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff); inst.size = (inst.instruction > 0xffff ? 4 : 2); if (inst.size_req && inst.size_req != inst.size) { as_bad (_("cannot honor width suffix -- `%s'"), str); return; } } /* Something has gone badly wrong if we try to relax a fixed size instruction. */ gas_assert (inst.size_req == 0 || !inst.relax); ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *opcode->tvariant); /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly set those bits when Thumb-2 32-bit instructions are seen. The impact of relaxable instructions will be considered later after we finish all relaxation. */ if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any)) variant = arm_arch_none; else variant = cpu_variant; if (inst.size == 4 && !t32_insn_ok (variant, opcode)) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_v6t2); check_neon_suffixes; if (!inst.error) { mapping_state (MAP_THUMB); } } else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)) { bool is_bx; /* bx is allowed on v5 cores, and sometimes on v4 cores. */ is_bx = (opcode->aencode == do_bx); /* Check that this instruction is supported for this CPU. */ if (!(is_bx && fix_v4bx) && !(opcode->avariant && ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))) { as_bad (_("selected processor does not support `%s' in ARM mode"), str); return; } if (inst.size_req) { as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str); return; } inst.instruction = opcode->avalue; if (opcode->tag == OT_unconditionalF) inst.instruction |= 0xFU << 28; else inst.instruction |= inst.cond << 28; inst.size = INSN_SIZE; if (!parse_operands (p, opcode->operands, /*thumb=*/false)) { it_fsm_pre_encode (); opcode->aencode (); it_fsm_post_encode (); } /* Arm mode bx is marked as both v4T and v5 because it's still required on a hypothetical non-thumb v5 core. */ if (is_bx) ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *opcode->avariant); check_neon_suffixes; if (!inst.error) { mapping_state (MAP_ARM); } } else { as_bad (_("attempt to use an ARM instruction on a Thumb-only processor " "-- `%s'"), str); return; } output_inst (str); } static void check_pred_blocks_finished (void) { #ifdef OBJ_ELF asection *sect; for (sect = stdoutput->sections; sect != NULL; sect = sect->next) if (seg_info (sect)->tc_segment_info_data.current_pred.state == MANUAL_PRED_BLOCK) { if (now_pred.type == SCALAR_PRED) as_warn (_("section '%s' finished with an open IT block."), sect->name); else as_warn (_("section '%s' finished with an open VPT/VPST block."), sect->name); } #else if (now_pred.state == MANUAL_PRED_BLOCK) { if (now_pred.type == SCALAR_PRED) as_warn (_("file finished with an open IT block.")); else as_warn (_("file finished with an open VPT/VPST block.")); } #endif } /* Various frobbings of labels and their addresses. */ void arm_start_line_hook (void) { last_label_seen = NULL; } void arm_frob_label (symbolS * sym) { last_label_seen = sym; ARM_SET_THUMB (sym, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (sym, support_interwork); #endif force_automatic_it_block_close (); /* Note - do not allow local symbols (.Lxxx) to be labelled as Thumb functions. This is because these labels, whilst they exist inside Thumb code, are not the entry points for possible ARM->Thumb calls. Also, these labels can be used as part of a computed goto or switch statement. eg gcc can generate code that looks like this: ldr r2, [pc, .Laaa] lsl r3, r3, #2 ldr r2, [r3, r2] mov pc, r2 .Lbbb: .word .Lxxx .Lccc: .word .Lyyy ..etc... .Laaa: .word Lbbb The first instruction loads the address of the jump table. The second instruction converts a table index into a byte offset. The third instruction gets the jump address out of the table. The fourth instruction performs the jump. If the address stored at .Laaa is that of a symbol which has the Thumb_Func bit set, then the linker will arrange for this address to have the bottom bit set, which in turn would mean that the address computation performed by the third instruction would end up with the bottom bit set. Since the ARM is capable of unaligned word loads, the instruction would then load the incorrect address out of the jump table, and chaos would ensue. */ if (label_is_thumb_function_name && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L') && (bfd_section_flags (now_seg) & SEC_CODE) != 0) { /* When the address of a Thumb function is taken the bottom bit of that address should be set. This will allow interworking between Arm and Thumb functions to work correctly. */ THUMB_SET_FUNC (sym, 1); label_is_thumb_function_name = false; } dwarf2_emit_label (sym); } bool arm_data_in_code (void) { if (thumb_mode && startswith (input_line_pointer + 1, "data:")) { *input_line_pointer = '/'; input_line_pointer += 5; *input_line_pointer = 0; return true; } return false; } char * arm_canonicalize_symbol_name (char * name) { int len; if (thumb_mode && (len = strlen (name)) > 5 && streq (name + len - 5, "/data")) *(name + len - 5) = 0; return name; } /* Table of all register names defined by default. The user can define additional names with .req. Note that all register names should appear in both upper and lowercase variants. Some registers also have mixed-case names. */ #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, true, 0 } #define REGNUM(p,n,t) REGDEF(p##n, n, t) #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t) #define REGSET(p,t) \ REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \ REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \ REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \ REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t) #define REGSETH(p,t) \ REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \ REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \ REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \ REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t) #define REGSET2(p,t) \ REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \ REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \ REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \ REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t) #define SPLRBANK(base,bank,t) \ REGDEF(lr_##bank, 768|((base+0)<<16), t), \ REGDEF(sp_##bank, 768|((base+1)<<16), t), \ REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \ REGDEF(LR_##bank, 768|((base+0)<<16), t), \ REGDEF(SP_##bank, 768|((base+1)<<16), t), \ REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t) static const struct reg_entry reg_names[] = { /* ARM integer registers. */ REGSET(r, RN), REGSET(R, RN), /* ATPCS synonyms. */ REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN), REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN), REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN), REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN), REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN), REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN), /* Well-known aliases. */ REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN), REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN), REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN), REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN), /* Defining the new Zero register from ARMv8.1-M. */ REGDEF(zr,15,ZR), REGDEF(ZR,15,ZR), /* Coprocessor numbers. */ REGSET(p, CP), REGSET(P, CP), /* Coprocessor register numbers. The "cr" variants are for backward compatibility. */ REGSET(c, CN), REGSET(C, CN), REGSET(cr, CN), REGSET(CR, CN), /* ARM banked registers. */ REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB), REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB), REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB), REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB), REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB), REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB), REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB), REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB), REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB), REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB), REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB), REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB), REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB), REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB), SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB), SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB), SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB), SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB), SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB), REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB), REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB), REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB), REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB), /* VFP SP registers. */ REGSET(s,VFS), REGSET(S,VFS), REGSETH(s,VFS), REGSETH(S,VFS), /* VFP DP Registers. */ REGSET(d,VFD), REGSET(D,VFD), /* Extra Neon DP registers. */ REGSETH(d,VFD), REGSETH(D,VFD), /* Neon QP registers. */ REGSET2(q,NQ), REGSET2(Q,NQ), /* VFP control registers. */ REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC), REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC), REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC), REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC), REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC), REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC), REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC), REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC), REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC), REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC), REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC), REGDEF(fpcxtns,14,VFC), REGDEF(FPCXTNS,14,VFC), REGDEF(fpcxts,15,VFC), REGDEF(FPCXTS,15,VFC), /* iWMMXt data registers - p0, c0-15. */ REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR), /* iWMMXt control registers - p1, c0-3. */ REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC), REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC), REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC), REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC), /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */ REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG), REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG), REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG), REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG), /* XScale accumulator registers. */ REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE), /* DWARF ABI defines RA_AUTH_CODE to 143. */ REGDEF(ra_auth_code,143,PSEUDO), }; #undef REGDEF #undef REGNUM #undef REGSET /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled within psr_required_here. */ static const struct asm_psr psrs[] = { /* Backward compatibility notation. Note that "all" is no longer truly all possible PSR bits. */ {"all", PSR_c | PSR_f}, {"flg", PSR_f}, {"ctl", PSR_c}, /* Individual flags. */ {"f", PSR_f}, {"c", PSR_c}, {"x", PSR_x}, {"s", PSR_s}, /* Combinations of flags. */ {"fs", PSR_f | PSR_s}, {"fx", PSR_f | PSR_x}, {"fc", PSR_f | PSR_c}, {"sf", PSR_s | PSR_f}, {"sx", PSR_s | PSR_x}, {"sc", PSR_s | PSR_c}, {"xf", PSR_x | PSR_f}, {"xs", PSR_x | PSR_s}, {"xc", PSR_x | PSR_c}, {"cf", PSR_c | PSR_f}, {"cs", PSR_c | PSR_s}, {"cx", PSR_c | PSR_x}, {"fsx", PSR_f | PSR_s | PSR_x}, {"fsc", PSR_f | PSR_s | PSR_c}, {"fxs", PSR_f | PSR_x | PSR_s}, {"fxc", PSR_f | PSR_x | PSR_c}, {"fcs", PSR_f | PSR_c | PSR_s}, {"fcx", PSR_f | PSR_c | PSR_x}, {"sfx", PSR_s | PSR_f | PSR_x}, {"sfc", PSR_s | PSR_f | PSR_c}, {"sxf", PSR_s | PSR_x | PSR_f}, {"sxc", PSR_s | PSR_x | PSR_c}, {"scf", PSR_s | PSR_c | PSR_f}, {"scx", PSR_s | PSR_c | PSR_x}, {"xfs", PSR_x | PSR_f | PSR_s}, {"xfc", PSR_x | PSR_f | PSR_c}, {"xsf", PSR_x | PSR_s | PSR_f}, {"xsc", PSR_x | PSR_s | PSR_c}, {"xcf", PSR_x | PSR_c | PSR_f}, {"xcs", PSR_x | PSR_c | PSR_s}, {"cfs", PSR_c | PSR_f | PSR_s}, {"cfx", PSR_c | PSR_f | PSR_x}, {"csf", PSR_c | PSR_s | PSR_f}, {"csx", PSR_c | PSR_s | PSR_x}, {"cxf", PSR_c | PSR_x | PSR_f}, {"cxs", PSR_c | PSR_x | PSR_s}, {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c}, {"fscx", PSR_f | PSR_s | PSR_c | PSR_x}, {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c}, {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s}, {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x}, {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s}, {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c}, {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x}, {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c}, {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f}, {"scfx", PSR_s | PSR_c | PSR_f | PSR_x}, {"scxf", PSR_s | PSR_c | PSR_x | PSR_f}, {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c}, {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s}, {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c}, {"xscf", PSR_x | PSR_s | PSR_c | PSR_f}, {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s}, {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f}, {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x}, {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s}, {"csfx", PSR_c | PSR_s | PSR_f | PSR_x}, {"csxf", PSR_c | PSR_s | PSR_x | PSR_f}, {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s}, {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f}, }; /* Table of V7M psr names. */ static const struct asm_psr v7m_psrs[] = { {"apsr", 0x0 }, {"APSR", 0x0 }, {"iapsr", 0x1 }, {"IAPSR", 0x1 }, {"eapsr", 0x2 }, {"EAPSR", 0x2 }, {"psr", 0x3 }, {"PSR", 0x3 }, {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 }, {"ipsr", 0x5 }, {"IPSR", 0x5 }, {"epsr", 0x6 }, {"EPSR", 0x6 }, {"iepsr", 0x7 }, {"IEPSR", 0x7 }, {"msp", 0x8 }, {"MSP", 0x8 }, {"psp", 0x9 }, {"PSP", 0x9 }, {"msplim", 0xa }, {"MSPLIM", 0xa }, {"psplim", 0xb }, {"PSPLIM", 0xb }, {"primask", 0x10}, {"PRIMASK", 0x10}, {"basepri", 0x11}, {"BASEPRI", 0x11}, {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12}, {"faultmask", 0x13}, {"FAULTMASK", 0x13}, {"control", 0x14}, {"CONTROL", 0x14}, {"pac_key_p_0", 0x20}, {"PAC_KEY_P_0", 0x20}, {"pac_key_p_1", 0x21}, {"PAC_KEY_P_1", 0x21}, {"pac_key_p_2", 0x22}, {"PAC_KEY_P_2", 0x22}, {"pac_key_p_3", 0x23}, {"PAC_KEY_P_3", 0x23}, {"pac_key_u_0", 0x24}, {"PAC_KEY_U_0", 0x24}, {"pac_key_u_1", 0x25}, {"PAC_KEY_U_1", 0x25}, {"pac_key_u_2", 0x26}, {"PAC_KEY_U_2", 0x26}, {"pac_key_u_3", 0x27}, {"PAC_KEY_U_3", 0x27}, {"msp_ns", 0x88}, {"MSP_NS", 0x88}, {"psp_ns", 0x89}, {"PSP_NS", 0x89}, {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a}, {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b}, {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90}, {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91}, {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93}, {"control_ns", 0x94}, {"CONTROL_NS", 0x94}, {"sp_ns", 0x98}, {"SP_NS", 0x98}, {"pac_key_p_0_ns", 0xa0}, {"PAC_KEY_P_0_NS", 0xa0}, {"pac_key_p_1_ns", 0xa1}, {"PAC_KEY_P_1_NS", 0xa1}, {"pac_key_p_2_ns", 0xa2}, {"PAC_KEY_P_2_NS", 0xa2}, {"pac_key_p_3_ns", 0xa3}, {"PAC_KEY_P_3_NS", 0xa3}, {"pac_key_u_0_ns", 0xa4}, {"PAC_KEY_U_0_NS", 0xa4}, {"pac_key_u_1_ns", 0xa5}, {"PAC_KEY_U_1_NS", 0xa5}, {"pac_key_u_2_ns", 0xa6}, {"PAC_KEY_U_2_NS", 0xa6}, {"pac_key_u_3_ns", 0xa7}, {"PAC_KEY_U_3_NS", 0xa7}, }; /* Table of all shift-in-operand names. */ static const struct asm_shift_name shift_names [] = { { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL }, { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL }, { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR }, { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR }, { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR }, { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }, { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW} }; /* Table of all explicit relocation names. */ #ifdef OBJ_ELF static struct reloc_entry reloc_names[] = { { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 }, { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF }, { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 }, { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 }, { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 }, { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 }, { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32}, { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32}, { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32}, { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32}, { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}, { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}, { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC}, { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC}, { "tlscall", BFD_RELOC_ARM_TLS_CALL}, { "TLSCALL", BFD_RELOC_ARM_TLS_CALL}, { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ}, { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}, { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC }, { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC }, { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC }, { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC }, { "funcdesc", BFD_RELOC_ARM_FUNCDESC }, { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC }, { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC }, }; #endif /* Table of all conditional affixes. */ static const struct asm_cond conds[] = { {"eq", 0x0}, {"ne", 0x1}, {"cs", 0x2}, {"hs", 0x2}, {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3}, {"mi", 0x4}, {"pl", 0x5}, {"vs", 0x6}, {"vc", 0x7}, {"hi", 0x8}, {"ls", 0x9}, {"ge", 0xa}, {"lt", 0xb}, {"gt", 0xc}, {"le", 0xd}, {"al", 0xe} }; static const struct asm_cond vconds[] = { {"t", 0xf}, {"e", 0x10} }; #define UL_BARRIER(L,U,CODE,FEAT) \ { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \ { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) } static struct asm_barrier_opt barrier_opt_names[] = { UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER), UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER), UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8), UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER), UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER), UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER), UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER), UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8), UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER), UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER), UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER), UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER), UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8), UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER), UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER), UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8) }; #undef UL_BARRIER /* Table of ARM-format instructions. */ /* Macros for gluing together operand strings. N.B. In all cases other than OPS0, the trailing OP_stop comes from default zero-initialization of the unspecified elements of the array. */ #define OPS0() { OP_stop, } #define OPS1(a) { OP_##a, } #define OPS2(a,b) { OP_##a,OP_##b, } #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, } #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, } #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, } #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, } /* These macros are similar to the OPSn, but do not prepend the OP_ prefix. This is useful when mixing operands for ARM and THUMB, i.e. using the MIX_ARM_THUMB_OPERANDS macro. In order to use these macros, prefix the number of operands with _ e.g. _3. */ #define OPS_1(a) { a, } #define OPS_2(a,b) { a,b, } #define OPS_3(a,b,c) { a,b,c, } #define OPS_4(a,b,c,d) { a,b,c,d, } #define OPS_5(a,b,c,d,e) { a,b,c,d,e, } #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, } /* These macros abstract out the exact format of the mnemonic table and save some repeated characters. */ /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */ #define TxCE(mnem, op, top, nops, ops, ae, te) \ { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te, 0 } /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for a T_MNEM_xyz enumerator. */ #define TCE(mnem, aop, top, nops, ops, ae, te) \ TxCE (mnem, aop, 0x##top, nops, ops, ae, te) #define tCE(mnem, aop, top, nops, ops, ae, te) \ TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te) /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional infix after the third character. */ #define TxC3(mnem, op, top, nops, ops, ae, te) \ { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te, 0 } #define TxC3w(mnem, op, top, nops, ops, ae, te) \ { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te, 0 } #define TC3(mnem, aop, top, nops, ops, ae, te) \ TxC3 (mnem, aop, 0x##top, nops, ops, ae, te) #define TC3w(mnem, aop, top, nops, ops, ae, te) \ TxC3w (mnem, aop, 0x##top, nops, ops, ae, te) #define tC3(mnem, aop, top, nops, ops, ae, te) \ TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te) #define tC3w(mnem, aop, top, nops, ops, ae, te) \ TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te) /* Mnemonic that cannot be conditionalized. The ARM condition-code field is still 0xE. Many of the Thumb variants can be executed conditionally, so this is checked separately. */ #define TUE(mnem, op, top, nops, ops, ae, te) \ { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te, 0 } /* Same as TUE but the encoding function for ARM and Thumb modes is the same. Used by mnemonics that have very minimal differences in the encoding for ARM and Thumb variants and can be handled in a common function. */ #define TUEc(mnem, op, top, nops, ops, en) \ { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##en, do_##en, 0 } /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM condition code field. */ #define TUF(mnem, op, top, nops, ops, ae, te) \ { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te, 0 } /* ARM-only variants of all the above. */ #define CE(mnem, op, nops, ops, ae) \ { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 } #define C3(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 } /* Thumb-only variants of TCE and TUE. */ #define ToC(mnem, top, nops, ops, te) \ { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \ do_##te, 0 } #define ToU(mnem, top, nops, ops, te) \ { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \ NULL, do_##te, 0 } /* T_MNEM_xyz enumerator variants of ToC. */ #define toC(mnem, top, nops, ops, te) \ { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \ do_##te, 0 } /* T_MNEM_xyz enumerator variants of ToU. */ #define toU(mnem, top, nops, ops, te) \ { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \ NULL, do_##te, 0 } /* Legacy mnemonics that always have conditional infix after the third character. */ #define CL(mnem, op, nops, ops, ae) \ { mnem, OPS##nops ops, OT_cinfix3_legacy, \ 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 } /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */ #define cCE(mnem, op, nops, ops, ae) \ { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 } /* mov instructions that are shared between coprocessor and MVE. */ #define mcCE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 } #define xCM_(m1, m2, m3, op, nops, ops, ae) \ { m1 #m2 m3, OPS##nops ops, \ sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \ 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 } #define CM(m1, m2, op, nops, ops, ae) \ xCM_ (m1, , m2, op, nops, ops, ae), \ xCM_ (m1, eq, m2, op, nops, ops, ae), \ xCM_ (m1, ne, m2, op, nops, ops, ae), \ xCM_ (m1, cs, m2, op, nops, ops, ae), \ xCM_ (m1, hs, m2, op, nops, ops, ae), \ xCM_ (m1, cc, m2, op, nops, ops, ae), \ xCM_ (m1, ul, m2, op, nops, ops, ae), \ xCM_ (m1, lo, m2, op, nops, ops, ae), \ xCM_ (m1, mi, m2, op, nops, ops, ae), \ xCM_ (m1, pl, m2, op, nops, ops, ae), \ xCM_ (m1, vs, m2, op, nops, ops, ae), \ xCM_ (m1, vc, m2, op, nops, ops, ae), \ xCM_ (m1, hi, m2, op, nops, ops, ae), \ xCM_ (m1, ls, m2, op, nops, ops, ae), \ xCM_ (m1, ge, m2, op, nops, ops, ae), \ xCM_ (m1, lt, m2, op, nops, ops, ae), \ xCM_ (m1, gt, m2, op, nops, ops, ae), \ xCM_ (m1, le, m2, op, nops, ops, ae), \ xCM_ (m1, al, m2, op, nops, ops, ae) #define UE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 } #define UF(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 } /* Neon data-processing. ARM versions are unconditional with cond=0xf. The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we use the same encoding function for each. */ #define NUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 } /* Neon data processing, version which indirects through neon_enc_tab for the various overloaded versions of opcodes. */ #define nUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 } /* Neon insn with conditional suffix for the ARM version, non-overloaded version. */ #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \ { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \ THUMB_VARIANT, do_##enc, do_##enc, mve_p } #define NCE(mnem, op, nops, ops, enc) \ NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0) #define NCEF(mnem, op, nops, ops, enc) \ NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0) /* Neon insn with conditional suffix for the ARM version, overloaded types. */ #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \ { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p } #define nCE(mnem, op, nops, ops, enc) \ nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0) #define nCEF(mnem, op, nops, ops, enc) \ nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0) /* */ #define mCEF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 } /* nCEF but for MVE predicated instructions. */ #define mnCEF(mnem, op, nops, ops, enc) \ nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1) /* nCE but for MVE predicated instructions. */ #define mnCE(mnem, op, nops, ops, enc) \ nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1) /* NUF but for potentially MVE predicated instructions. */ #define MNUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 } /* nUF but for potentially MVE predicated instructions. */ #define mnUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 } /* ToC but for potentially MVE predicated instructions. */ #define mToC(mnem, top, nops, ops, te) \ { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \ do_##te, 1 } /* NCE but for MVE predicated instructions. */ #define MNCE(mnem, op, nops, ops, enc) \ NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1) /* NCEF but for MVE predicated instructions. */ #define MNCEF(mnem, op, nops, ops, enc) \ NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1) #define do_0 0 static const struct asm_opcode insns[] = { #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */ #define THUMB_VARIANT & arm_ext_v4t tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c), tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c), tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c), tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c), tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub), tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub), tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub), tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub), tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c), tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c), tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3), tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3), tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c), tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c), tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3), tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3), /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism for setting PSR flag bits. They are obsolete in V6 and do not have Thumb equivalents. */ tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst), tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst), CL("tstp", 110f000, 2, (RR, SH), cmp), tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp), tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp), CL("cmpp", 150f000, 2, (RR, SH), cmp), tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst), tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst), CL("cmnp", 170f000, 2, (RR, SH), cmp), tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp), tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp), tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst), tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst), tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst), tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst), tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpc), OP_ADDRGLDR),ldst, t_ldst), tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst), tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tCE("b", a000000, _b, 1, (EXPr), branch, t_branch), TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23), /* Pseudo ops. */ tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr), C3(adrl, 28f0000, 2, (RR, EXP), adrl), tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop), tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf), /* Thumb-compatibility pseudo ops. */ tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift), tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift), tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift), tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift), tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift), tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift), tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift), tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift), tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg), tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg), tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop), tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop), /* These may simplify to neg. */ TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb), TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_os TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi), TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy), /* V1 instructions with no Thumb analogue prior to V6T2. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), CL("teqp", 130f000, 2, (RR, SH), cmp), TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt), TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt), TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt), TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt), TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), /* V1 instructions with no Thumb analogue at all. */ CE("rsc", 0e00000, 3, (RR, oRR, SH), arit), C3(rscs, 0f00000, 3, (RR, oRR, SH), arit), C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm), C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm), C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm), C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v4t tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul), tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas), /* Generic coprocessor instructions. */ TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */ CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_msr TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs), TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v4t tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v4t_5 /* ARM Architecture 4T. */ /* Note: bx (and blx) are required on V5, even if the processor does not support Thumb. */ TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v5t /* Note: blx has 2 variants; the .value coded here is for BLX(2). Only this variant has conditional execution. */ TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx), TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz), TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v5exp TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2), TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2), TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2), TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld), TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS), ldrd, t_ldstd), TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS), ldrd, t_ldstd), TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */ TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi), TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi), tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2_v8m TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex), TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR), strex, t_strex), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat), TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat), /* ARM V6 not included in V7M. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6_notm TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe), TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfeib, 9900a00, 1, (RRw), rfe), UF(rfeda, 8100a00, 1, (RRw), rfe), TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe), TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfefa, 8100a00, 1, (RRw), rfe), TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe), UF(rfeed, 9900a00, 1, (RRw), rfe), TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs), TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs), TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs), UF(srsib, 9c00500, 2, (oRRw, I31w), srs), UF(srsfa, 9c00500, 2, (oRRw, I31w), srs), UF(srsda, 8400500, 2, (oRRw, I31w), srs), UF(srsed, 8400500, 2, (oRRw, I31w), srs), TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs), TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs), TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps), /* ARM V6 not included in V7M (eg. integer SIMD). */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6_dsp TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt), TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb), TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for QASX. */ TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for QSAX. */ TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for SASX. */ TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for SHASX. */ TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for SHSAX. */ TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for SSAX. */ TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for UASX. */ TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for UHASX. */ TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for UHSAX. */ TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for UQASX. */ TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for UQSAX. */ TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), /* Old name for USAX. */ TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16), TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal), TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v6k_v6t2 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6k_v6t2 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint), tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint), tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint), tCE("sev", 320f004, _sev, 0, (), noargs, t_hint), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6_notm TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb), ldrexd, t_ldrexd), TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp, RRnpcb), strexd, t_strexd), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2_v8m TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb), rd_rn, rd_rn), TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb), rd_rn, rd_rn), TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR), strex, t_strexbh), TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR), strex, t_strexbh), TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_sec #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_sec TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_virt #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_virt TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc), TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_pan #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_pan TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v6t2 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc), TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi), TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit), TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt), TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt), TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt), TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v3 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb), TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb), TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v6t2 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2_v8m TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16), TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16), /* Thumb-only instructions. */ #undef ARM_VARIANT #define ARM_VARIANT NULL TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz), TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz), /* ARM does not really have an IT instruction, so always allow it. The opcode is copied from Thumb in order to allow warnings in -mimplicit-it=[never | arm] modes. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v1 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 TUE("it", bf08, bf08, 1, (COND), it, t_it), TUE("itt", bf0c, bf0c, 1, (COND), it, t_it), TUE("ite", bf04, bf04, 1, (COND), it, t_it), TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it), TUE("itet", bf06, bf06, 1, (COND), it, t_it), TUE("itte", bf0a, bf0a, 1, (COND), it, t_it), TUE("itee", bf02, bf02, 1, (COND), it, t_it), TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it), TUE("itett", bf07, bf07, 1, (COND), it, t_it), TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it), TUE("iteet", bf03, bf03, 1, (COND), it, t_it), TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it), TUE("itete", bf05, bf05, 1, (COND), it, t_it), TUE("ittee", bf09, bf09, 1, (COND), it, t_it), TUE("iteee", bf01, bf01, 1, (COND), it, t_it), /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */ TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx), TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx), /* Thumb2 only instructions. */ #undef ARM_VARIANT #define ARM_VARIANT NULL TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w), TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w), TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn), TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn), TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb), TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb), /* Hardware division instructions. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_adiv #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_div TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div), TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div), /* ARM V6M/V7 instructions. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_barrier #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_barrier TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier), TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier), TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier), /* ARM V7 instructions. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v7 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v7 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld), TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_mp #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_mp TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld), /* AArchv8 instructions. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v8 /* Instructions shared between armv8-a and armv8-m. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_atomics TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn), TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn), TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn), TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn), TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb), stlex, t_stlex), TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb), stlex, t_stlex), TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb), stlex, t_stlex), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint), TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd), TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd), #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8r #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v8r /* ARMv8-R instructions. */ TUF("dfb", 57ff04c, f3bf8f4c, 0, (), noargs, noargs), /* Defined in V8 but is in undefined encoding space for earlier architectures. However earlier architectures are required to treat this instuction as a semihosting trap as well. Hence while not explicitly defined as such, it is in fact correct to define the instruction for all architectures. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v1 #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v1 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt), /* ARMv8 T32 only. */ #undef ARM_VARIANT #define ARM_VARIANT NULL TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs), TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs), TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs), /* FP for ARMv8. */ #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_armv8xd #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_ext_armv8xd nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel), nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel), nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel), nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel), nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr), mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz), mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx), mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta), mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn), mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp), mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm), /* Crypto v1 extensions. */ #undef ARM_VARIANT #define ARM_VARIANT & fpu_crypto_ext_armv8 #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_crypto_ext_armv8 nUF(aese, _aes, 2, (RNQ, RNQ), aese), nUF(aesd, _aes, 2, (RNQ, RNQ), aesd), nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc), nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc), nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c), nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p), nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m), nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0), nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h), nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2), nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1), nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h), nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1), nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_crc #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_crc TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b), TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h), TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w), TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb), TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch), TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw), /* ARMv8.2 RAS extension. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_ras #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_ras TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v8_3 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8_3 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt), #undef ARM_VARIANT #define ARM_VARIANT & fpu_neon_ext_dotprod #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_neon_ext_dotprod NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s), NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs), mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr), mcCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst), mcCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst), mcCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst), mcCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst), /* Memory operations. */ mcCE(fldmias, c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia), mcCE(fldmdbs, d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb), mcCE(fstmias, c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia), mcCE(fstmdbs, d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb), #undef THUMB_VARIANT /* Moves and type conversions. */ cCE("fmstat", ef1fa10, 0, (), noargs), cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic), cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic), cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic), cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn), cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd), /* Memory operations. */ cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia), cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb), cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia), cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia), cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb), cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb), cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia), cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb), cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia), cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia), cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb), cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb), /* Monadic operations. */ cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic), cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic), /* Dyadic operations. */ cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), /* Comparisons. */ cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic), cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z), cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z), /* Double precision load/store are still present on single precision implementations. */ cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia), cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia), cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb), cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb), cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia), cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia), cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb), cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */ /* Moves and type conversions. */ cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd), cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd), cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn), cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn), cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), /* Monadic operations. */ cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm), cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm), cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm), /* Dyadic operations. */ cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), /* Comparisons. */ cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm), cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd), cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm), cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd), /* Instructions which may belong to either the Neon or VFP instruction sets. Individual encoder functions perform additional architecture checks. */ #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v1xd #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm), NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop), NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push), #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_ext_v1xd /* These mnemonics are unique to VFP. */ NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt), NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div), nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz), /* Mnemonics shared by Neon and VFP. */ nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar), mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt), nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr), MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb), MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt), /* NOTE: All VMOV encoding is special-cased! */ NCE(vmovq, 0, 1, (VMOV), neon_mov), #undef THUMB_VARIANT /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded by different feature bits. Since we are setting the Thumb guard, we can require Thumb-1 which makes it a nop guard and set the right feature bit in do_vldr_vstr (). */ #define THUMB_VARIANT & arm_ext_v4t NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr), NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_fp16 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_fp16 /* New instructions added from v8.2, allowing the extraction and insertion of the upper 16 bits of a 32-bit vector register. */ NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf), NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf), /* New backported fma/fms instructions optional in v8.2. */ NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl), NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal), #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_neon_ext_v1 #undef ARM_VARIANT #define ARM_VARIANT & fpu_neon_ext_v1 /* Data processing with three registers of the same length. */ /* integer ops, valid types S8 S16 S32 U8 U16 U32. */ NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su), NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su), NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl), NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl), /* If not immediate, fall back to neon_dyadic_i64_su. shl should accept I8 I16 I32 I64, qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */ nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl), nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl), /* Logic ops, types optional & ignored. */ nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic), nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic), nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic), nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic), nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic), /* Bitfield ops, untyped. */ NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield), NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield), NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield), /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */ nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall back to neon_dyadic_if_su. */ nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp), nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp), nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp), nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp), nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv), nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv), nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv), nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv), /* Comparison. Type I8 I16 I32 F32. */ nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq), nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq), /* As above, D registers only. */ nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d), nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d), /* Int and float variants, signedness unimportant. */ nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar), nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar), nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d), /* Add/sub take types I8 I16 I32 I64 F32. */ nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i), nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i), /* vtst takes sizes 8, 16, 32. */ NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst), NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst), /* VMUL takes I8 I16 I32 F32 P8. */ nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul), /* VQD{R}MULH takes S16 S32. */ nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh), nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh), NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute), NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute), NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute), NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute), NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv), NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv), NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv), NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv), NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step), NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step), NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step), NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step), /* ARM v8.1 extension. */ nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah), nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah), nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah), /* Two address, int/float. Types S8 S16 S32 F32. */ NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg), NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg), /* Data processing with two registers and a shift amount. */ /* Right shifts, and variants with rounding. Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm), NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm), NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm), NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm), NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm), NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm), /* Shift and insert. Sizes accepted 8 16 32 64. */ NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli), NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri), /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm), /* Right shift immediate, saturating & narrowing, with rounding variants. Types accepted S16 S32 S64 U16 U32 U64. */ NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow), NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow), /* As above, unsigned. Types accepted S16 S32 S64. */ NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u), NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u), /* Right shift narrowing. Types accepted I16 I32 I64. */ NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow), NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow), /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */ nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll), /* CVT with optional immediate for fixed-point variant. */ nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt), nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn), /* Data processing, three registers of different lengths. */ /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */ NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal), /* If not scalar, fall back to neon_dyadic_long. Vector types as above, scalar types S16 S32 U16 U32. */ nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long), nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long), /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */ NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide), NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide), /* Dyadic, narrowing insns. Types I16 I32 I64. */ NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), /* Saturating doubling multiplies. Types S16 S32. */ nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types S16 S32 U16 U32. */ nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull), /* Extract. Size 8. */ NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext), NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext), /* Two registers, miscellaneous. */ /* Reverse. Sizes 8 16 32 (must be < size in opcode). */ NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev), NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev), NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev), /* Vector replicate. Sizes 8 16 32. */ nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup), /* VMOVL. Types S8 S16 S32 U8 U16 U32. */ NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl), /* VMOVN. Types I16 I32 I64. */ nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn), /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */ nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn), /* VQMOVUN. Types S16 S32 S64. */ nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun), /* VZIP / VUZP. Sizes 8 16 32. */ NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp), NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp), NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp), NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp), /* VQABS / VQNEG. Types S8 S16 S32. */ NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg), NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg), /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */ NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long), NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long), NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long), NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long), /* Reciprocal estimates. Types U32 F16 F32. */ NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est), NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est), NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est), NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est), /* VCLS. Types S8 S16 S32. */ NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls), /* VCLZ. Types I8 I16 I32. */ NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz), /* VCNT. Size 8. */ NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt), NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt), /* Two address, untyped. */ NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp), NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp), /* VTRN. Sizes 8 16 32. */ nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn), nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn), /* Table lookup. Size 8. */ NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx), NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx), #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext /* Neon element/structure load/store. */ nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx), #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_ext_v3xd #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v3xd cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const), cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32), #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_ext_v3 #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v3 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const), cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_fma #undef THUMB_VARIANT #define THUMB_VARIANT & fpu_vfp_ext_fma /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the VFP FMA variant; NEON and VFP FMA always includes the NEON FMA instructions. */ mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac), TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma), mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac), /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas; the v form should always be used. */ cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), #undef THUMB_VARIANT #undef ARM_VARIANT #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */ cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar), cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra), #undef ARM_VARIANT #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */ cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc), cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc), cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc), cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd), cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd), cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd), cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc), cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc), cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc), cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd), cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn), cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn), cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn), cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn), cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn), cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm), cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc), cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc), cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc), cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn), cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn), cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn), cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni), cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd), cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov), cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh), cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5), cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd), cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn), cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero), #undef ARM_VARIANT #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */ cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc), cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc), cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc), cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn), cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn), cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn), cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge), cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), /* ARMv8.5-A instructions. */ #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_sb #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_sb TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_predres #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_predres CE("cfprctx", e070f93, 1, (RRnpc), rd), CE("dvprctx", e070fb3, 1, (RRnpc), rd), CE("cpprctx", e070ff3, 1, (RRnpc), rd), /* ARMv8-M instructions. */ #undef ARM_VARIANT #define ARM_VARIANT NULL #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8m ToU("sg", e97fe97f, 0, (), noargs), ToC("blxns", 4784, 1, (RRnpc), t_blx), ToC("bxns", 4704, 1, (RRnpc), t_bx), ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt), ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt), ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt), ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt), /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the instructions behave as nop if no VFP is present. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8m_main ToC("vlldm", ec300a00, 1, (RRnpc), rn), ToC("vlstm", ec200a00, 1, (RRnpc), rn), /* Armv8.1-M Mainline instructions. */ #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v8_1m_main toU("aut", _aut, 3, (R12, LR, SP), t_pacbti), toU("autg", _autg, 3, (RR, RR, RR), t_pacbti_nonop), ToU("bti", f3af800f, 0, (), noargs), toU("bxaut", _bxaut, 3, (RR, RR, RR), t_pacbti_nonop), toU("pac", _pac, 3, (R12, LR, SP), t_pacbti), toU("pacbti", _pacbti, 3, (R12, LR, SP), t_pacbti), toU("pacg", _pacg, 3, (RR, RR, RR), t_pacbti_pacg), toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond), toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond), toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond), toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond), toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond), toU("cset", _cset, 2, (RRnpcsp, COND), t_cond), toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond), toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond), toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond), toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future), toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future), toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future), toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future), toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future), toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop), toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop), toU("le", _le, 2, (oLR, EXP), t_loloop), ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm), ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm), #undef THUMB_VARIANT #define THUMB_VARIANT & mve_ext ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift), ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift), ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift), ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1), ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1), ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift), ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift), ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift), ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift), ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift), ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift), ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift), ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift), ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift), ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift), ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt), ToC("vpst", fe710f4d, 0, (), mve_vpt), ToC("vpstt", fe318f4d, 0, (), mve_vpt), ToC("vpste", fe718f4d, 0, (), mve_vpt), ToC("vpsttt", fe314f4d, 0, (), mve_vpt), ToC("vpstte", fe31cf4d, 0, (), mve_vpt), ToC("vpstet", fe71cf4d, 0, (), mve_vpt), ToC("vpstee", fe714f4d, 0, (), mve_vpt), ToC("vpstttt", fe312f4d, 0, (), mve_vpt), ToC("vpsttte", fe316f4d, 0, (), mve_vpt), ToC("vpsttet", fe31ef4d, 0, (), mve_vpt), ToC("vpsttee", fe31af4d, 0, (), mve_vpt), ToC("vpstett", fe71af4d, 0, (), mve_vpt), ToC("vpstete", fe71ef4d, 0, (), mve_vpt), ToC("vpsteet", fe716f4d, 0, (), mve_vpt), ToC("vpsteee", fe712f4d, 0, (), mve_vpt), /* MVE and MVE FP only. */ mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd), mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp), mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc), mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc), mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc), mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc), mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull), mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav), mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav), mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld), mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld), mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld), mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld), mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld), mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr), mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn), mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn), mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr), mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv), mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv), mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv), mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv), mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup), mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup), mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup), mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup), mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina), mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina), mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv), mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv), mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv), mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv), mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav), mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh), mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas), mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh), mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh), mToC("vpnot", fe310f4d, 0, (), mve_vpnot), mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel), mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh), mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah), mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah), mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah), mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull), mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull), mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn), mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn), mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn), mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn), mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqshrnt, _vqshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqshrnb, _vqshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqshrunt, _vqshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqshrunb, _vqshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn), mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn), mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc), mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll), mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll), toU("dlstp", _dlstp, 2, (LR, RR), t_loloop), toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop), toU("letp", _letp, 2, (LR, EXP), t_loloop), toU("lctp", _lctp, 0, (), t_loloop), #undef THUMB_VARIANT #define THUMB_VARIANT & mve_fp_ext mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul), mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas), mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma), mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma), mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv), mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv), mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv), mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v1 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v1xd mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar), mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul), MNCE(vmov, 0, 1, (VMOV), neon_mov), mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp), mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg), mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic), mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull), mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i), mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i), MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg), MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg), mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl), mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl), mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp), mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_v2 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2), mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2), mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn), mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm), #undef ARM_VARIANT #define ARM_VARIANT & fpu_vfp_ext_armv8xd mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta), mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp), mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn), mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm), mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm), mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm), #undef ARM_VARIANT #define ARM_VARIANT & fpu_neon_ext_v1 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su), mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long), mnUF(vaddl, _vaddl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long), mnUF(vsubl, _vsubl, 3, (RNSDQMQ, oRNSDMQ, RNSDMQR), neon_dyadic_long), mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic), mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic), mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic), mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic), mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic), MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls), MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz), mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup), MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su), MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su), MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su), mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su), mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su), MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su), MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su), mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn), MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg), MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg), mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah), mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh), mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh), MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl), MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl), MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm), MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm), MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli), MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri), MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev), MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev), MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev), mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl), mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl), MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm), #undef ARM_VARIANT #define ARM_VARIANT & arm_ext_v8_3 #undef THUMB_VARIANT #define THUMB_VARIANT & arm_ext_v6t2_v8m MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd), MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_bf16 #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_bf16 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot), TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla), TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_i8mm #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_i8mm TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla), TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla), TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla), TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot), TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot), #undef ARM_VARIANT #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_cde ToC ("cx1", ee000000, 3, (RCP, APSR_RR, I8191), cx1), ToC ("cx1a", fe000000, 3, (RCP, APSR_RR, I8191), cx1a), ToC ("cx1d", ee000040, 4, (RCP, RR, APSR_RR, I8191), cx1d), ToC ("cx1da", fe000040, 4, (RCP, RR, APSR_RR, I8191), cx1da), ToC ("cx2", ee400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2), ToC ("cx2a", fe400000, 4, (RCP, APSR_RR, APSR_RR, I511), cx2a), ToC ("cx2d", ee400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2d), ToC ("cx2da", fe400040, 5, (RCP, RR, APSR_RR, APSR_RR, I511), cx2da), ToC ("cx3", ee800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3), ToC ("cx3a", fe800000, 5, (RCP, APSR_RR, APSR_RR, APSR_RR, I63), cx3a), ToC ("cx3d", ee800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3d), ToC ("cx3da", fe800040, 6, (RCP, RR, APSR_RR, APSR_RR, APSR_RR, I63), cx3da), mToC ("vcx1", ec200000, 3, (RCP, RNSDMQ, I4095), vcx1), mToC ("vcx1a", fc200000, 3, (RCP, RNSDMQ, I4095), vcx1), mToC ("vcx2", ec300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2), mToC ("vcx2a", fc300000, 4, (RCP, RNSDMQ, RNSDMQ, I127), vcx2), mToC ("vcx3", ec800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3), mToC ("vcx3a", fc800000, 5, (RCP, RNSDMQ, RNSDMQ, RNSDMQ, I15), vcx3), }; #undef ARM_VARIANT #undef THUMB_VARIANT #undef TCE #undef TUE #undef TUF #undef TCC #undef cCE #undef C3 #undef CE #undef CM #undef CL #undef UE #undef UF #undef UT #undef NUF #undef nUF #undef NCE #undef nCE #undef OPS0 #undef OPS1 #undef OPS2 #undef OPS3 #undef OPS4 #undef OPS5 #undef OPS6 #undef do_0 #undef ToC #undef toC #undef ToU #undef toU /* MD interface: bits in the object file. */ /* Turn an integer of n bytes (in val) into a stream of bytes appropriate for use in the a.out file, and stores them in the array pointed to by buf. This knows about the endian-ness of the target machine and does THE RIGHT THING, whatever it is. Possible values for n are 1 (byte) 2 (short) and 4 (long) Floating numbers are put out as a series of LITTLENUMS (shorts, here at least). */ void md_number_to_chars (char * buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static valueT md_chars_to_number (char * buf, int n) { valueT result = 0; unsigned char * where = (unsigned char *) buf; if (target_big_endian) { while (n--) { result <<= 8; result |= (*where++ & 255); } } else { while (n--) { result <<= 8; result |= (where[n] & 255); } } return result; } /* MD interface: Sections. */ /* Calculate the maximum variable size (i.e., excluding fr_fix) that an rs_machine_dependent frag may reach. */ unsigned int arm_frag_max_var (fragS *fragp) { /* We only use rs_machine_dependent for variable-size Thumb instructions, which are either THUMB_SIZE (2) or INSN_SIZE (4). Note that we generate relaxable instructions even for cases that don't really need it, like an immediate that's a trivial constant. So we're overestimating the instruction size for some of those cases. Rather than putting more intelligence here, it would probably be better to avoid generating a relaxation frag in the first place when it can be determined up front that a short instruction will suffice. */ gas_assert (fragp->fr_type == rs_machine_dependent); return INSN_SIZE; } /* Estimate the size of a frag before relaxing. Assume everything fits in 2 bytes. */ int md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED) { fragp->fr_var = 2; return 2; } /* Convert a machine dependent frag. */ void md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp) { unsigned long insn; unsigned long old_op; char *buf; expressionS exp; fixS *fixp; int reloc_type; int pc_rel; int opcode; buf = fragp->fr_literal + fragp->fr_fix; old_op = bfd_get_16(abfd, buf); if (fragp->fr_symbol) { exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; } else { exp.X_op = O_constant; } exp.X_add_number = fragp->fr_offset; opcode = fragp->fr_subtype; switch (opcode) { case T_MNEM_ldr_pc: case T_MNEM_ldr_pc2: case T_MNEM_ldr_sp: case T_MNEM_str_sp: case T_MNEM_ldr: case T_MNEM_ldrb: case T_MNEM_ldrh: case T_MNEM_str: case T_MNEM_strb: case T_MNEM_strh: if (fragp->fr_var == 4) { insn = THUMB_OP32 (opcode); if ((old_op >> 12) == 4 || (old_op >> 12) == 9) { insn |= (old_op & 0x700) << 4; } else { insn |= (old_op & 7) << 12; insn |= (old_op & 0x38) << 13; } insn |= 0x00000c00; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else { reloc_type = BFD_RELOC_ARM_THUMB_OFFSET; } pc_rel = (opcode == T_MNEM_ldr_pc2); break; case T_MNEM_adr: /* Thumb bits should be set in the frag handling so we process them after all symbols have been seen. PR gas/25235. */ if (exp.X_op == O_symbol && exp.X_add_symbol != NULL && S_IS_DEFINED (exp.X_add_symbol) && THUMB_IS_FUNC (exp.X_add_symbol)) exp.X_add_number |= 1; if (fragp->fr_var == 4) { insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_ADD_PC12; } else { reloc_type = BFD_RELOC_ARM_THUMB_ADD; exp.X_add_number -= 4; } pc_rel = 1; break; case T_MNEM_mov: case T_MNEM_movs: case T_MNEM_cmp: case T_MNEM_cmn: if (fragp->fr_var == 4) { int r0off = (opcode == T_MNEM_mov || opcode == T_MNEM_movs) ? 0 : 8; insn = THUMB_OP32 (opcode); insn = (insn & 0xe1ffffff) | 0x10000000; insn |= (old_op & 0x700) << r0off; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { reloc_type = BFD_RELOC_ARM_THUMB_IMM; } pc_rel = 0; break; case T_MNEM_b: if (fragp->fr_var == 4) { insn = THUMB_OP32(opcode); put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25; } else reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12; pc_rel = 1; break; case T_MNEM_bcond: if (fragp->fr_var == 4) { insn = THUMB_OP32(opcode); insn |= (old_op & 0xf00) << 14; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20; } else reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9; pc_rel = 1; break; case T_MNEM_add_sp: case T_MNEM_add_pc: case T_MNEM_inc_sp: case T_MNEM_dec_sp: if (fragp->fr_var == 4) { /* ??? Choose between add and addw. */ insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; put_thumb32_insn (buf, insn); if (opcode == T_MNEM_add_pc) reloc_type = BFD_RELOC_ARM_T32_IMM12; else reloc_type = BFD_RELOC_ARM_T32_ADD_IMM; } else reloc_type = BFD_RELOC_ARM_THUMB_ADD; pc_rel = 0; break; case T_MNEM_addi: case T_MNEM_addis: case T_MNEM_subi: case T_MNEM_subis: if (fragp->fr_var == 4) { insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; insn |= (old_op & 0xf) << 16; put_thumb32_insn (buf, insn); if (insn & (1 << 20)) reloc_type = BFD_RELOC_ARM_T32_ADD_IMM; else reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE; } else reloc_type = BFD_RELOC_ARM_THUMB_ADD; pc_rel = 0; break; default: abort (); } fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel, (enum bfd_reloc_code_real) reloc_type); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; fragp->fr_fix += fragp->fr_var; /* Set whether we use thumb-2 ISA based on final relaxation results. */ if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected () && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2)) ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2); } /* Return the size of a relaxable immediate operand instruction. SHIFT and SIZE specify the form of the allowable immediate. */ static int relax_immediate (fragS *fragp, int size, int shift) { offsetT offset; offsetT mask; offsetT low; /* ??? Should be able to do better than this. */ if (fragp->fr_symbol) return 4; low = (1 << shift) - 1; mask = (1 << (shift + size)) - (1 << shift); offset = fragp->fr_offset; /* Force misaligned offsets to 32-bit variant. */ if (offset & low) return 4; if (offset & ~mask) return 4; return 2; } /* Get the address of a symbol during relaxation. */ static addressT relaxed_symbol_addr (fragS *fragp, long stretch) { fragS *sym_frag; addressT addr; symbolS *sym; sym = fragp->fr_symbol; sym_frag = symbol_get_frag (sym); know (S_GET_SEGMENT (sym) != absolute_section || sym_frag == &zero_address_frag); addr = S_GET_VALUE (sym) + fragp->fr_offset; /* If frag has yet to be reached on this pass, assume it will move by STRETCH just as we did. If this is not so, it will be because some frag between grows, and that will force another pass. */ if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker) { fragS *f; /* Adjust stretch for any alignment frag. Note that if have been expanding the earlier code, the symbol may be defined in what appears to be an earlier frag. FIXME: This doesn't handle the fr_subtype field, which specifies a maximum number of bytes to skip when doing an alignment. */ for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next) { if (f->fr_type == rs_align || f->fr_type == rs_align_code) { if (stretch < 0) stretch = - ((- stretch) & ~ ((1 << (int) f->fr_offset) - 1)); else stretch &= ~ ((1 << (int) f->fr_offset) - 1); if (stretch == 0) break; } } if (f != NULL) addr += stretch; } return addr; } /* Return the size of a relaxable adr pseudo-instruction or PC-relative load. */ static int relax_adr (fragS *fragp, asection *sec, long stretch) { addressT addr; offsetT val; /* Assume worst case for symbols not known to be in the same section. */ if (fragp->fr_symbol == NULL || !S_IS_DEFINED (fragp->fr_symbol) || sec != S_GET_SEGMENT (fragp->fr_symbol) || S_IS_WEAK (fragp->fr_symbol) || THUMB_IS_FUNC (fragp->fr_symbol)) return 4; val = relaxed_symbol_addr (fragp, stretch); addr = fragp->fr_address + fragp->fr_fix; addr = (addr + 4) & ~3; /* Force misaligned targets to 32-bit variant. */ if (val & 3) return 4; val -= addr; if (val < 0 || val > 1020) return 4; return 2; } /* Return the size of a relaxable add/sub immediate instruction. */ static int relax_addsub (fragS *fragp, asection *sec) { char *buf; int op; buf = fragp->fr_literal + fragp->fr_fix; op = bfd_get_16(sec->owner, buf); if ((op & 0xf) == ((op >> 4) & 0xf)) return relax_immediate (fragp, 8, 0); else return relax_immediate (fragp, 3, 0); } /* Return TRUE iff the definition of symbol S could be pre-empted (overridden) at link or load time. */ static bool symbol_preemptible (symbolS *s) { /* Weak symbols can always be pre-empted. */ if (S_IS_WEAK (s)) return true; /* Non-global symbols cannot be pre-empted. */ if (! S_IS_EXTERNAL (s)) return false; #ifdef OBJ_ELF /* In ELF, a global symbol can be marked protected, or private. In that case it can't be pre-empted (other definitions in the same link unit would violate the ODR). */ if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT) return false; #endif /* Other global symbols might be pre-empted. */ return true; } /* Return the size of a relaxable branch instruction. BITS is the size of the offset field in the narrow instruction. */ static int relax_branch (fragS *fragp, asection *sec, int bits, long stretch) { addressT addr; offsetT val; offsetT limit; /* Assume worst case for symbols not known to be in the same section. */ if (!S_IS_DEFINED (fragp->fr_symbol) || sec != S_GET_SEGMENT (fragp->fr_symbol) || S_IS_WEAK (fragp->fr_symbol)) return 4; #ifdef OBJ_ELF /* A branch to a function in ARM state will require interworking. */ if (S_IS_DEFINED (fragp->fr_symbol) && ARM_IS_FUNC (fragp->fr_symbol)) return 4; #endif if (symbol_preemptible (fragp->fr_symbol)) return 4; val = relaxed_symbol_addr (fragp, stretch); addr = fragp->fr_address + fragp->fr_fix + 4; val -= addr; /* Offset is a signed value *2 */ limit = 1 << bits; if (val >= limit || val < -limit) return 4; return 2; } /* Relax a machine dependent frag. This returns the amount by which the current size of the frag should change. */ int arm_relax_frag (asection *sec, fragS *fragp, long stretch) { int oldsize; int newsize; oldsize = fragp->fr_var; switch (fragp->fr_subtype) { case T_MNEM_ldr_pc2: newsize = relax_adr (fragp, sec, stretch); break; case T_MNEM_ldr_pc: case T_MNEM_ldr_sp: case T_MNEM_str_sp: newsize = relax_immediate (fragp, 8, 2); break; case T_MNEM_ldr: case T_MNEM_str: newsize = relax_immediate (fragp, 5, 2); break; case T_MNEM_ldrh: case T_MNEM_strh: newsize = relax_immediate (fragp, 5, 1); break; case T_MNEM_ldrb: case T_MNEM_strb: newsize = relax_immediate (fragp, 5, 0); break; case T_MNEM_adr: newsize = relax_adr (fragp, sec, stretch); break; case T_MNEM_mov: case T_MNEM_movs: case T_MNEM_cmp: case T_MNEM_cmn: newsize = relax_immediate (fragp, 8, 0); break; case T_MNEM_b: newsize = relax_branch (fragp, sec, 11, stretch); break; case T_MNEM_bcond: newsize = relax_branch (fragp, sec, 8, stretch); break; case T_MNEM_add_sp: case T_MNEM_add_pc: newsize = relax_immediate (fragp, 8, 2); break; case T_MNEM_inc_sp: case T_MNEM_dec_sp: newsize = relax_immediate (fragp, 7, 2); break; case T_MNEM_addi: case T_MNEM_addis: case T_MNEM_subi: case T_MNEM_subis: newsize = relax_addsub (fragp, sec); break; default: abort (); } fragp->fr_var = newsize; /* Freeze wide instructions that are at or before the same location as in the previous pass. This avoids infinite loops. Don't freeze them unconditionally because targets may be artificially misaligned by the expansion of preceding frags. */ if (stretch <= 0 && newsize > 2) { md_convert_frag (sec->owner, sec, fragp); frag_wane (fragp); } return newsize - oldsize; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) { return size; } /* This is called from HANDLE_ALIGN in write.c. Fill in the contents of an rs_align_code fragment. */ void arm_handle_align (fragS * fragP) { static unsigned char const arm_noop[2][2][4] = { { /* ARMv1 */ {0x00, 0x00, 0xa0, 0xe1}, /* LE */ {0xe1, 0xa0, 0x00, 0x00}, /* BE */ }, { /* ARMv6k */ {0x00, 0xf0, 0x20, 0xe3}, /* LE */ {0xe3, 0x20, 0xf0, 0x00}, /* BE */ }, }; static unsigned char const thumb_noop[2][2][2] = { { /* Thumb-1 */ {0xc0, 0x46}, /* LE */ {0x46, 0xc0}, /* BE */ }, { /* Thumb-2 */ {0x00, 0xbf}, /* LE */ {0xbf, 0x00} /* BE */ } }; static unsigned char const wide_thumb_noop[2][4] = { /* Wide Thumb-2 */ {0xaf, 0xf3, 0x00, 0x80}, /* LE */ {0xf3, 0xaf, 0x80, 0x00}, /* BE */ }; unsigned bytes, fix, noop_size; char * p; const unsigned char * noop; const unsigned char *narrow_noop = NULL; #ifdef OBJ_ELF enum mstate state; #endif if (fragP->fr_type != rs_align_code) return; bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; p = fragP->fr_literal + fragP->fr_fix; fix = 0; if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE) bytes &= MAX_MEM_FOR_RS_ALIGN_CODE; gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0); if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED)) { if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0] ? selected_cpu : arm_arch_none, arm_ext_v6t2)) { narrow_noop = thumb_noop[1][target_big_endian]; noop = wide_thumb_noop[target_big_endian]; } else noop = thumb_noop[0][target_big_endian]; noop_size = 2; #ifdef OBJ_ELF state = MAP_THUMB; #endif } else { noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0] ? selected_cpu : arm_arch_none, arm_ext_v6k) != 0] [target_big_endian]; noop_size = 4; #ifdef OBJ_ELF state = MAP_ARM; #endif } fragP->fr_var = noop_size; if (bytes & (noop_size - 1)) { fix = bytes & (noop_size - 1); #ifdef OBJ_ELF insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix); #endif memset (p, 0, fix); p += fix; bytes -= fix; } if (narrow_noop) { if (bytes & noop_size) { /* Insert a narrow noop. */ memcpy (p, narrow_noop, noop_size); p += noop_size; bytes -= noop_size; fix += noop_size; } /* Use wide noops for the remainder */ noop_size = 4; } while (bytes >= noop_size) { memcpy (p, noop, noop_size); p += noop_size; bytes -= noop_size; fix += noop_size; } fragP->fr_fix += fix; } /* Called from md_do_align. Used to create an alignment frag in a code section. */ void arm_frag_align_code (int n, int max) { char * p; /* We assume that there will never be a requirement to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */ if (max > MAX_MEM_FOR_RS_ALIGN_CODE) { char err_msg[128]; sprintf (err_msg, _("alignments greater than %d bytes not supported in .text sections."), MAX_MEM_FOR_RS_ALIGN_CODE + 1); as_fatal ("%s", err_msg); } p = frag_var (rs_align_code, MAX_MEM_FOR_RS_ALIGN_CODE, 1, (relax_substateT) max, (symbolS *) NULL, (offsetT) n, (char *) NULL); *p = 0; } /* Perform target specific initialisation of a frag. Note - despite the name this initialisation is not done when the frag is created, but only when its type is assigned. A frag can be created and used a long time before its type is set, so beware of assuming that this initialisation is performed first. */ #ifndef OBJ_ELF void arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED) { /* Record whether this frag is in an ARM or a THUMB area. */ fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED; } #else /* OBJ_ELF is defined. */ void arm_init_frag (fragS * fragP, int max_chars) { bool frag_thumb_mode; /* If the current ARM vs THUMB mode has not already been recorded into this frag then do so now. */ if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0) fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED; /* PR 21809: Do not set a mapping state for debug sections - it just confuses other tools. */ if (bfd_section_flags (now_seg) & SEC_DEBUGGING) return; frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED; /* Record a mapping symbol for alignment frags. We will delete this later if the alignment ends up empty. */ switch (fragP->fr_type) { case rs_align: case rs_align_test: case rs_fill: mapping_state_2 (MAP_DATA, max_chars); break; case rs_align_code: mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars); break; default: break; } } /* When we change sections we need to issue a new mapping symbol. */ void arm_elf_change_section (void) { /* Link an unlinked unwind index table section to the .text section. */ if (elf_section_type (now_seg) == SHT_ARM_EXIDX && elf_linked_to_section (now_seg) == NULL) elf_linked_to_section (now_seg) = text_section; } int arm_elf_section_type (const char * str, size_t len) { if (len == 5 && startswith (str, "exidx")) return SHT_ARM_EXIDX; return -1; } /* Code to deal with unwinding tables. */ static void add_unwind_adjustsp (offsetT); /* Generate any deferred unwind frame offset. */ static void flush_pending_unwind (void) { offsetT offset; offset = unwind.pending_offset; unwind.pending_offset = 0; if (offset != 0) add_unwind_adjustsp (offset); } /* Add an opcode to this list for this function. Two-byte opcodes should be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse order. */ static void add_unwind_opcode (valueT op, int length) { /* Add any deferred stack adjustment. */ if (unwind.pending_offset) flush_pending_unwind (); unwind.sp_restored = 0; if (unwind.opcode_count + length > unwind.opcode_alloc) { unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE; if (unwind.opcodes) unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes, unwind.opcode_alloc); else unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc); } while (length > 0) { length--; unwind.opcodes[unwind.opcode_count] = op & 0xff; op >>= 8; unwind.opcode_count++; } } /* Add unwind opcodes to adjust the stack pointer. */ static void add_unwind_adjustsp (offsetT offset) { valueT op; if (offset > 0x200) { /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */ char bytes[5]; int n; valueT o; /* Long form: 0xb2, uleb128. */ /* This might not fit in a word so add the individual bytes, remembering the list is built in reverse order. */ o = (valueT) ((offset - 0x204) >> 2); if (o == 0) add_unwind_opcode (0, 1); /* Calculate the uleb128 encoding of the offset. */ n = 0; while (o) { bytes[n] = o & 0x7f; o >>= 7; if (o) bytes[n] |= 0x80; n++; } /* Add the insn. */ for (; n; n--) add_unwind_opcode (bytes[n - 1], 1); add_unwind_opcode (0xb2, 1); } else if (offset > 0x100) { /* Two short opcodes. */ add_unwind_opcode (0x3f, 1); op = (offset - 0x104) >> 2; add_unwind_opcode (op, 1); } else if (offset > 0) { /* Short opcode. */ op = (offset - 4) >> 2; add_unwind_opcode (op, 1); } else if (offset < 0) { offset = -offset; while (offset > 0x100) { add_unwind_opcode (0x7f, 1); offset -= 0x100; } op = ((offset - 4) >> 2) | 0x40; add_unwind_opcode (op, 1); } } /* Finish the list of unwind opcodes for this function. */ static void finish_unwind_opcodes (void) { valueT op; if (unwind.fp_used) { /* Adjust sp as necessary. */ unwind.pending_offset += unwind.fp_offset - unwind.frame_size; flush_pending_unwind (); /* After restoring sp from the frame pointer. */ op = 0x90 | unwind.fp_reg; add_unwind_opcode (op, 1); } else flush_pending_unwind (); } /* Start an exception table entry. If idx is nonzero this is an index table entry. */ static void start_unwind_section (const segT text_seg, int idx) { const char * text_name; const char * prefix; const char * prefix_once; struct elf_section_match match; char * sec_name; int type; int flags; int linkonce; if (idx) { prefix = ELF_STRING_ARM_unwind; prefix_once = ELF_STRING_ARM_unwind_once; type = SHT_ARM_EXIDX; } else { prefix = ELF_STRING_ARM_unwind_info; prefix_once = ELF_STRING_ARM_unwind_info_once; type = SHT_PROGBITS; } text_name = segment_name (text_seg); if (streq (text_name, ".text")) text_name = ""; if (startswith (text_name, ".gnu.linkonce.t.")) { prefix = prefix_once; text_name += strlen (".gnu.linkonce.t."); } sec_name = concat (prefix, text_name, (char *) NULL); flags = SHF_ALLOC; linkonce = 0; memset (&match, 0, sizeof (match)); /* Handle COMDAT group. */ if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0) { match.group_name = elf_group_name (text_seg); if (match.group_name == NULL) { as_bad (_("Group section `%s' has no group signature"), segment_name (text_seg)); ignore_rest_of_line (); return; } flags |= SHF_GROUP; linkonce = 1; } obj_elf_change_section (sec_name, type, flags, 0, &match, linkonce); /* Set the section link for index tables. */ if (idx) elf_linked_to_section (now_seg) = text_seg; } /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional personality routine data. Returns zero, or the index table value for an inline entry. */ static valueT create_unwind_entry (int have_data) { int size; addressT where; char *ptr; /* The current word of data. */ valueT data; /* The number of bytes left in this word. */ int n; finish_unwind_opcodes (); /* Remember the current text section. */ unwind.saved_seg = now_seg; unwind.saved_subseg = now_subseg; start_unwind_section (now_seg, 0); if (unwind.personality_routine == NULL) { if (unwind.personality_index == -2) { if (have_data) as_bad (_("handlerdata in cantunwind frame")); return 1; /* EXIDX_CANTUNWIND. */ } /* Use a default personality routine if none is specified. */ if (unwind.personality_index == -1) { if (unwind.opcode_count > 3) unwind.personality_index = 1; else unwind.personality_index = 0; } /* Space for the personality routine entry. */ if (unwind.personality_index == 0) { if (unwind.opcode_count > 3) { as_bad (_("too many unwind opcodes for personality routine 0")); return 1; } if (!have_data) { /* All the data is inline in the index table. */ data = 0x80; n = 3; while (unwind.opcode_count > 0) { unwind.opcode_count--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; n--; } /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; return data; } size = 0; } else /* We get two opcodes "free" in the first word. */ size = unwind.opcode_count - 2; } else { /* PR 16765: Missing or misplaced unwind directives can trigger this. */ if (unwind.personality_index != -1) { as_bad (_("attempt to recreate an unwind entry")); return 1; } /* An extra byte is required for the opcode count. */ size = unwind.opcode_count + 1; } size = (size + 3) >> 2; if (size > 0xff) { as_bad (_("too many unwind opcodes")); return 1; } frag_align (2, 0, 0); record_alignment (now_seg, 2); unwind.table_entry = expr_build_dot (); /* Allocate the table entry. */ ptr = frag_more ((size << 2) + 4); /* PR 13449: Zero the table entries in case some of them are not used. */ memset (ptr, 0, (size << 2) + 4); where = frag_now_fix () - ((size << 2) + 4); switch (unwind.personality_index) { case -1: /* ??? Should this be a PLT generating relocation? */ /* Custom personality routine. */ fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1, BFD_RELOC_ARM_PREL31); where += 4; ptr += 4; /* Set the first byte to the number of additional words. */ data = size > 0 ? size - 1 : 0; n = 3; break; /* ABI defined personality routines. */ case 0: /* Three opcodes bytes are packed into the first word. */ data = 0x80; n = 3; break; case 1: case 2: /* The size and first two opcode bytes go in the first word. */ data = ((0x80 + unwind.personality_index) << 8) | size; n = 2; break; default: /* Should never happen. */ abort (); } /* Pack the opcodes into words (MSB first), reversing the list at the same time. */ while (unwind.opcode_count > 0) { if (n == 0) { md_number_to_chars (ptr, data, 4); ptr += 4; n = 4; data = 0; } unwind.opcode_count--; n--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; } /* Finish off the last word. */ if (n < 4) { /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; md_number_to_chars (ptr, data, 4); } if (!have_data) { /* Add an empty descriptor if there is no user-specified data. */ ptr = frag_more (4); md_number_to_chars (ptr, 0, 4); } return 0; } /* Initialize the DWARF-2 unwind information for this procedure. */ void tc_arm_frame_initial_instructions (void) { cfi_add_CFA_def_cfa (REG_SP, 0); } #endif /* OBJ_ELF */ /* Convert REGNAME to a DWARF-2 register number. */ int tc_arm_regname_to_dw2regnum (char *regname) { int reg = arm_reg_parse (®name, REG_TYPE_RN); if (reg != FAIL) return reg; /* PR 16694: Allow VFP registers as well. */ reg = arm_reg_parse (®name, REG_TYPE_VFS); if (reg != FAIL) return 64 + reg; reg = arm_reg_parse (®name, REG_TYPE_VFD); if (reg != FAIL) return reg + 256; reg = arm_reg_parse (®name, REG_TYPE_PSEUDO); if (reg != FAIL) return reg; return FAIL; } #ifdef TE_PE void tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size) { expressionS exp; exp.X_op = O_secrel; exp.X_add_symbol = symbol; exp.X_add_number = 0; emit_expr (&exp, size); } #endif /* MD interface: Symbol and relocation handling. */ /* Return the address within the segment that a PC-relative fixup is relative to. For ARM, PC-relative fixups applied to instructions are generally relative to the location of the fixup plus 8 bytes. Thumb branches are offset by 4, and Thumb loads relative to PC require special handling. */ long md_pcrel_from_section (fixS * fixP, segT seg) { offsetT base = fixP->fx_where + fixP->fx_frag->fr_address; /* If this is pc-relative and we are going to emit a relocation then we just want to put out any pipeline compensation that the linker will need. Otherwise we want to use the calculated base. For WinCE we skip the bias for externals as well, since this is how the MS ARM-CE assembler behaves and we want to be compatible. */ if (fixP->fx_pcrel && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg) || (arm_force_relocation (fixP) #ifdef TE_WINCE && !S_IS_EXTERNAL (fixP->fx_addsy) #endif ))) base = 0; switch (fixP->fx_r_type) { /* PC relative addressing on the Thumb is slightly odd as the bottom two bits of the PC are forced to zero for the calculation. This happens *after* application of the pipeline offset. However, Thumb adrl already adjusts for this, so we need not do it again. */ case BFD_RELOC_ARM_THUMB_ADD: return base & ~3; case BFD_RELOC_ARM_THUMB_OFFSET: case BFD_RELOC_ARM_T32_OFFSET_IMM: case BFD_RELOC_ARM_T32_ADD_PC12: case BFD_RELOC_ARM_T32_CP_OFF_IMM: return (base + 4) & ~3; /* Thumb branches are simply offset by +4. */ case BFD_RELOC_THUMB_PCREL_BRANCH5: case BFD_RELOC_THUMB_PCREL_BRANCH7: case BFD_RELOC_THUMB_PCREL_BRANCH9: case BFD_RELOC_THUMB_PCREL_BRANCH12: case BFD_RELOC_THUMB_PCREL_BRANCH20: case BFD_RELOC_THUMB_PCREL_BRANCH25: case BFD_RELOC_THUMB_PCREL_BFCSEL: case BFD_RELOC_ARM_THUMB_BF17: case BFD_RELOC_ARM_THUMB_BF19: case BFD_RELOC_ARM_THUMB_BF13: case BFD_RELOC_ARM_THUMB_LOOP12: return base + 4; case BFD_RELOC_THUMB_PCREL_BRANCH23: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) base = fixP->fx_where + fixP->fx_frag->fr_address; return base + 4; /* BLX is like branches above, but forces the low two bits of PC to zero. */ case BFD_RELOC_THUMB_PCREL_BLX: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && THUMB_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) base = fixP->fx_where + fixP->fx_frag->fr_address; return (base + 4) & ~3; /* ARM mode branches are offset by +8. However, the Windows CE loader expects the relocation not to take this into account. */ case BFD_RELOC_ARM_PCREL_BLX: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) base = fixP->fx_where + fixP->fx_frag->fr_address; return base + 8; case BFD_RELOC_ARM_PCREL_CALL: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && THUMB_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) base = fixP->fx_where + fixP->fx_frag->fr_address; return base + 8; case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_ARM_PCREL_JUMP: case BFD_RELOC_ARM_PLT32: #ifdef TE_WINCE /* When handling fixups immediately, because we have already discovered the value of a symbol, or the address of the frag involved we must account for the offset by +8, as the OS loader will never see the reloc. see fixup_segment() in write.c The S_IS_EXTERNAL test handles the case of global symbols. Those need the calculated base, not just the pipe compensation the linker will need. */ if (fixP->fx_pcrel && fixP->fx_addsy != NULL && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP))) return base + 8; return base; #else return base + 8; #endif /* ARM mode loads relative to PC are also offset by +8. Unlike branches, the Windows CE loader *does* expect the relocation to take this into account. */ case BFD_RELOC_ARM_OFFSET_IMM: case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_CP_OFF_IMM: return base + 8; /* Other PC-relative relocations are un-offset. */ default: return base; } } static bool flag_warn_syms = true; bool arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name) { /* PR 18347 - Warn if the user attempts to create a symbol with the same name as an ARM instruction. Whilst strictly speaking it is allowed, it does mean that the resulting code might be very confusing to the reader. Also this warning can be triggered if the user omits an operand before an immediate address, eg: LDR =foo GAS treats this as an assignment of the value of the symbol foo to a symbol LDR, and so (without this code) it will not issue any kind of warning or error message. Note - ARM instructions are case-insensitive but the strings in the hash table are all stored in lower case, so we must first ensure that name is lower case too. */ if (flag_warn_syms && arm_ops_hsh) { char * nbuf = strdup (name); char * p; for (p = nbuf; *p; p++) *p = TOLOWER (*p); if (str_hash_find (arm_ops_hsh, nbuf) != NULL) { static htab_t already_warned = NULL; if (already_warned == NULL) already_warned = str_htab_create (); /* Only warn about the symbol once. To keep the code simple we let str_hash_insert do the lookup for us. */ if (str_hash_insert (already_warned, nbuf, NULL, 0) == NULL) as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name); } else free (nbuf); } return false; } /* Under ELF we need to default _GLOBAL_OFFSET_TABLE. Otherwise we have no need to default values of symbols. */ symbolS * md_undefined_symbol (char * name ATTRIBUTE_UNUSED) { #ifdef OBJ_ELF if (name[0] == '_' && name[1] == 'G' && streq (name, GLOBAL_OFFSET_TABLE_NAME)) { if (!GOT_symbol) { if (symbol_find (name)) as_bad (_("GOT already in the symbol table")); GOT_symbol = symbol_new (name, undefined_section, &zero_address_frag, 0); } return GOT_symbol; } #endif return NULL; } /* Subroutine of md_apply_fix. Check to see if an immediate can be computed as two separate immediate values, added together. We already know that this value cannot be computed by just one ARM instruction. */ static unsigned int validate_immediate_twopart (unsigned int val, unsigned int * highpart) { unsigned int a; unsigned int i; for (i = 0; i < 32; i += 2) if (((a = rotate_left (val, i)) & 0xff) != 0) { if (a & 0xff00) { if (a & ~ 0xffff) continue; * highpart = (a >> 8) | ((i + 24) << 7); } else if (a & 0xff0000) { if (a & 0xff000000) continue; * highpart = (a >> 16) | ((i + 16) << 7); } else { gas_assert (a & 0xff000000); * highpart = (a >> 24) | ((i + 8) << 7); } return (a & 0xff) | (i << 7); } return FAIL; } static int validate_offset_imm (unsigned int val, int hwse) { if ((hwse && val > 255) || val > 4095) return FAIL; return val; } /* Subroutine of md_apply_fix. Do those data_ops which can take a negative immediate constant by altering the instruction. A bit of a hack really. MOV <-> MVN AND <-> BIC ADC <-> SBC by inverting the second operand, and ADD <-> SUB CMP <-> CMN by negating the second operand. */ static int negate_data_op (unsigned long * instruction, unsigned long value) { int op, new_inst; unsigned long negated, inverted; negated = encode_arm_immediate (-value); inverted = encode_arm_immediate (~value); op = (*instruction >> DATA_OP_SHIFT) & 0xf; switch (op) { /* First negates. */ case OPCODE_SUB: /* ADD <-> SUB */ new_inst = OPCODE_ADD; value = negated; break; case OPCODE_ADD: new_inst = OPCODE_SUB; value = negated; break; case OPCODE_CMP: /* CMP <-> CMN */ new_inst = OPCODE_CMN; value = negated; break; case OPCODE_CMN: new_inst = OPCODE_CMP; value = negated; break; /* Now Inverted ops. */ case OPCODE_MOV: /* MOV <-> MVN */ new_inst = OPCODE_MVN; value = inverted; break; case OPCODE_MVN: new_inst = OPCODE_MOV; value = inverted; break; case OPCODE_AND: /* AND <-> BIC */ new_inst = OPCODE_BIC; value = inverted; break; case OPCODE_BIC: new_inst = OPCODE_AND; value = inverted; break; case OPCODE_ADC: /* ADC <-> SBC */ new_inst = OPCODE_SBC; value = inverted; break; case OPCODE_SBC: new_inst = OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned) FAIL) return FAIL; *instruction &= OPCODE_MASK; *instruction |= new_inst << DATA_OP_SHIFT; return value; } /* Like negate_data_op, but for Thumb-2. */ static unsigned int thumb32_negate_data_op (valueT *instruction, unsigned int value) { unsigned int op, new_inst; unsigned int rd; unsigned int negated, inverted; negated = encode_thumb32_immediate (-value); inverted = encode_thumb32_immediate (~value); rd = (*instruction >> 8) & 0xf; op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf; switch (op) { /* ADD <-> SUB. Includes CMP <-> CMN. */ case T2_OPCODE_SUB: new_inst = T2_OPCODE_ADD; value = negated; break; case T2_OPCODE_ADD: new_inst = T2_OPCODE_SUB; value = negated; break; /* ORR <-> ORN. Includes MOV <-> MVN. */ case T2_OPCODE_ORR: new_inst = T2_OPCODE_ORN; value = inverted; break; case T2_OPCODE_ORN: new_inst = T2_OPCODE_ORR; value = inverted; break; /* AND <-> BIC. TST has no inverted equivalent. */ case T2_OPCODE_AND: new_inst = T2_OPCODE_BIC; if (rd == 15) value = FAIL; else value = inverted; break; case T2_OPCODE_BIC: new_inst = T2_OPCODE_AND; value = inverted; break; /* ADC <-> SBC */ case T2_OPCODE_ADC: new_inst = T2_OPCODE_SBC; value = inverted; break; case T2_OPCODE_SBC: new_inst = T2_OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned int)FAIL) return FAIL; *instruction &= T2_OPCODE_MASK; *instruction |= new_inst << T2_DATA_OP_SHIFT; return value; } /* Read a 32-bit thumb instruction from buf. */ static unsigned long get_thumb32_insn (char * buf) { unsigned long insn; insn = md_chars_to_number (buf, THUMB_SIZE) << 16; insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); return insn; } /* We usually want to set the low bit on the address of thumb function symbols. In particular .word foo - . should have the low bit set. Generic code tries to fold the difference of two symbols to a constant. Prevent this and force a relocation when the first symbols is a thumb function. */ bool arm_optimize_expr (expressionS *l, operatorT op, expressionS *r) { if (op == O_subtract && l->X_op == O_symbol && r->X_op == O_symbol && THUMB_IS_FUNC (l->X_add_symbol)) { l->X_op = O_subtract; l->X_op_symbol = r->X_add_symbol; l->X_add_number -= r->X_add_number; return true; } /* Process as normal. */ return false; } /* Encode Thumb2 unconditional branches and calls. The encoding for the 2 are identical for the immediate values. */ static void encode_thumb2_b_bl_offset (char * buf, offsetT value) { #define T2I1I2MASK ((1 << 13) | (1 << 11)) offsetT newval; offsetT newval2; addressT S, I1, I2, lo, hi; S = (value >> 24) & 0x01; I1 = (value >> 23) & 0x01; I2 = (value >> 22) & 0x01; hi = (value >> 12) & 0x3ff; lo = (value >> 1) & 0x7ff; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= (S << 10) | hi; newval2 &= ~T2I1I2MASK; newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } void md_apply_fix (fixS * fixP, valueT * valP, segT seg) { valueT value = * valP; valueT newval; unsigned int newimm; unsigned long temp; int sign; char * buf = fixP->fx_where + fixP->fx_frag->fr_literal; gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED); /* Note whether this will delete the relocation. */ if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; /* On a 64-bit host, silently truncate 'value' to 32 bits for consistency with the behaviour on 32-bit hosts. Remember value for emit_reloc. */ value &= 0xffffffff; value ^= 0x80000000; value -= 0x80000000; *valP = value; fixP->fx_addnumber = value; /* Same treatment for fixP->fx_offset. */ fixP->fx_offset &= 0xffffffff; fixP->fx_offset ^= 0x80000000; fixP->fx_offset -= 0x80000000; switch (fixP->fx_r_type) { case BFD_RELOC_NONE: /* This will need to go in the object file. */ fixP->fx_done = 0; break; case BFD_RELOC_ARM_IMMEDIATE: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy) { const char *msg = 0; if (! S_IS_DEFINED (fixP->fx_addsy)) msg = _("undefined symbol %s used as an immediate value"); else if (S_GET_SEGMENT (fixP->fx_addsy) != seg) msg = _("symbol %s is in a different section"); else if (S_IS_WEAK (fixP->fx_addsy)) msg = _("symbol %s is weak and may be overridden later"); if (msg) { as_bad_where (fixP->fx_file, fixP->fx_line, msg, S_GET_NAME (fixP->fx_addsy)); break; } } temp = md_chars_to_number (buf, INSN_SIZE); /* If the offset is negative, we should use encoding A2 for ADR. */ if ((temp & 0xfff0000) == 0x28f0000 && (offsetT) value < 0) newimm = negate_data_op (&temp, value); else { newimm = encode_arm_immediate (value); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL) newimm = negate_data_op (&temp, value); /* MOV accepts both ARM modified immediate (A1 encoding) and UINT16 (A2 encoding) when possible, MOVW only accepts UINT16. When disassembling, MOV is preferred when there is no encoding overlap. */ if (newimm == (unsigned int) FAIL && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2) && !((temp >> SBIT_SHIFT) & 0x1) && value <= 0xffff) { /* Clear bits[23:20] to change encoding from A1 to A2. */ temp &= 0xff0fffff; /* Encoding high 4bits imm. Code below will encode the remaining low 12bits. */ temp |= (value & 0x0000f000) << 4; newimm = value & 0x00000fff; } } if (newimm == (unsigned int) FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); break; case BFD_RELOC_ARM_ADRL_IMMEDIATE: { unsigned int highpart = 0; unsigned int newinsn = 0xe1a00000; /* nop. */ if (fixP->fx_addsy) { const char *msg = 0; if (! S_IS_DEFINED (fixP->fx_addsy)) msg = _("undefined symbol %s used as an immediate value"); else if (S_GET_SEGMENT (fixP->fx_addsy) != seg) msg = _("symbol %s is in a different section"); else if (S_IS_WEAK (fixP->fx_addsy)) msg = _("symbol %s is weak and may be overridden later"); if (msg) { as_bad_where (fixP->fx_file, fixP->fx_line, msg, S_GET_NAME (fixP->fx_addsy)); break; } } newimm = encode_arm_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL) { /* No ? OK - try using two ADD instructions to generate the value. */ newimm = validate_immediate_twopart (value, & highpart); /* Yes - then make sure that the second instruction is also an add. */ if (newimm != (unsigned int) FAIL) newinsn = temp; /* Still No ? Try using a negated value. */ else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL) temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT; /* Otherwise - give up. */ else { as_bad_where (fixP->fx_file, fixP->fx_line, _("unable to compute ADRL instructions for PC offset of 0x%lx"), (long) value); break; } /* Replace the first operand in the 2nd instruction (which is the PC) with the destination register. We have already added in the PC in the first instruction and we do not want to do it again. */ newinsn &= ~ 0xf0000; newinsn |= ((newinsn & 0x0f000) << 4); } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); highpart |= (newinsn & 0xfffff000); md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE); } break; case BFD_RELOC_ARM_OFFSET_IMM: if (!fixP->fx_done && seg->use_rela_p) value = 0; /* Fall through. */ case BFD_RELOC_ARM_LITERAL: sign = (offsetT) value > 0; if ((offsetT) value < 0) value = - value; if (validate_offset_imm (value, 0) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); if (value == 0) newval &= 0xfffff000; else { newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); } md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: sign = (offsetT) value > 0; if ((offsetT) value < 0) value = - value; if (validate_offset_imm (value, 1) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for 8-bit offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); if (value == 0) newval &= 0xfffff0f0; else { newval &= 0xff7ff0f0; newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0); } md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_U8: if (value > 1020 || value % 4 != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); value /= 4; newval = md_chars_to_number (buf+2, THUMB_SIZE); newval |= value; md_number_to_chars (buf+2, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_IMM: /* This is a complicated relocation used for all varieties of Thumb32 load/store instruction with immediate offset: 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit, *4, optional writeback(W) (doubleword load/store) 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction) 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit Uppercase letters indicate bits that are already encoded at this point. Lowercase letters are our problem. For the second block of instructions, the secondary opcode nybble (bits 8..11) is present, and bit 23 is zero, even if this is a PC-relative operation. */ newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE); if ((newval & 0xf0000000) == 0xe0000000) { /* Doubleword load/store: 8-bit offset, scaled by 4. */ if ((offsetT) value >= 0) newval |= (1 << 23); else value = -value; if (value % 4 != 0) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset not a multiple of 4")); break; } value /= 4; if (value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x000f0000) == 0x000f0000) { /* PC-relative, 12-bit offset. */ if ((offsetT) value >= 0) newval |= (1 << 23); else value = -value; if (value > 0xfff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xfff; } else if ((newval & 0x00000100) == 0x00000100) { /* Writeback: 8-bit, +/- offset. */ if ((offsetT) value >= 0) newval |= (1 << 9); else value = -value; if (value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x00000f00) == 0x00000e00) { /* T-instruction: positive 8-bit offset. */ if (value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; newval |= value; } else { /* Positive 12-bit or negative 8-bit offset. */ unsigned int limit; if ((offsetT) value >= 0) { newval |= (1 << 23); limit = 0xfff; } else { value = -value; limit = 0xff; } if (value > limit) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~limit; } newval |= value; md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE); break; case BFD_RELOC_ARM_SHIFT_IMM: newval = md_chars_to_number (buf, INSN_SIZE); if (value > 32 || (value == 32 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60))) { as_bad_where (fixP->fx_file, fixP->fx_line, _("shift expression is too large")); break; } if (value == 0) /* Shifts of zero must be done as lsl. */ newval &= ~0x60; else if (value == 32) value = 0; newval &= 0xfffff07f; newval |= (value & 0x1f) << 7; md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_IMMEDIATE: case BFD_RELOC_ARM_T32_ADD_IMM: case BFD_RELOC_ARM_T32_IMM12: case BFD_RELOC_ARM_T32_ADD_PC12: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy && ! S_IS_DEFINED (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("undefined symbol %s used as an immediate value"), S_GET_NAME (fixP->fx_addsy)); break; } newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+2, THUMB_SIZE); newimm = FAIL; if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE /* ARMv8-M Baseline MOV will reach here, but it doesn't support Thumb2 modified immediate encoding (T2). */ && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)) || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM) { newimm = encode_thumb32_immediate (value); if (newimm == (unsigned int) FAIL) newimm = thumb32_negate_data_op (&newval, value); } if (newimm == (unsigned int) FAIL) { if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE) { /* Turn add/sum into addw/subw. */ if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM) newval = (newval & 0xfeffffff) | 0x02000000; /* No flat 12-bit imm encoding for addsw/subsw. */ if ((newval & 0x00100000) == 0) { /* 12 bit immediate for addw/subw. */ if ((offsetT) value < 0) { value = -value; newval ^= 0x00a00000; } if (value > 0xfff) newimm = (unsigned int) FAIL; else newimm = value; } } else { /* MOV accepts both Thumb2 modified immediate (T2 encoding) and UINT16 (T3 encoding), MOVW only accepts UINT16. When disassembling, MOV is preferred when there is no encoding overlap. */ if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR /* NOTE: MOV uses the ORR opcode in Thumb 2 mode but with the Rn field [19:16] set to 1111. */ && (((newval >> 16) & 0xf) == 0xf) && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m) && !((newval >> T2_SBIT_SHIFT) & 0x1) && value <= 0xffff) { /* Toggle bit[25] to change encoding from T2 to T3. */ newval ^= 1 << 25; /* Clear bits[19:16]. */ newval &= 0xfff0ffff; /* Encoding high 4bits imm. Code below will encode the remaining low 12bits. */ newval |= (value & 0x0000f000) << 4; newimm = value & 0x00000fff; } } } if (newimm == (unsigned int)FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newval |= (newimm & 0x800) << 15; newval |= (newimm & 0x700) << 4; newval |= (newimm & 0x0ff); md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE); md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE); break; case BFD_RELOC_ARM_SMC: if (value > 0xf) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid smc expression")); newval = md_chars_to_number (buf, INSN_SIZE); newval |= (value & 0xf); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_HVC: if (value > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid hvc expression")); newval = md_chars_to_number (buf, INSN_SIZE); newval |= (value & 0xf) | ((value & 0xfff0) << 4); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SWI: if (fixP->tc_fix_data != 0) { if (value > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, THUMB_SIZE); newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (value > 0x00ffffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, INSN_SIZE); newval |= value; md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_ARM_MULTI: if (value > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid expression in load/store multiple")); newval = value | md_chars_to_number (buf, INSN_SIZE); md_number_to_chars (buf, newval, INSN_SIZE); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PCREL_CALL: if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t) && fixP->fx_addsy && !S_FORCE_RELOC (fixP->fx_addsy, true) && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && THUMB_IS_FUNC (fixP->fx_addsy)) /* Flip the bl to blx. This is a simple flip bit here because we generate PCREL_CALL for unconditional bls. */ { newval = md_chars_to_number (buf, INSN_SIZE); newval = newval | 0x10000000; md_number_to_chars (buf, newval, INSN_SIZE); temp = 1; fixP->fx_done = 1; } else temp = 3; goto arm_branch_common; case BFD_RELOC_ARM_PCREL_JUMP: if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t) && fixP->fx_addsy && !S_FORCE_RELOC (fixP->fx_addsy, true) && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && THUMB_IS_FUNC (fixP->fx_addsy)) { /* This would map to a bl, b, b to a Thumb function. We need to force a relocation for this particular case. */ newval = md_chars_to_number (buf, INSN_SIZE); fixP->fx_done = 0; } /* Fall through. */ case BFD_RELOC_ARM_PLT32: #endif case BFD_RELOC_ARM_PCREL_BRANCH: temp = 3; goto arm_branch_common; case BFD_RELOC_ARM_PCREL_BLX: temp = 1; if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t) && fixP->fx_addsy && !S_FORCE_RELOC (fixP->fx_addsy, true) && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && ARM_IS_FUNC (fixP->fx_addsy)) { /* Flip the blx to a bl and warn. */ const char *name = S_GET_NAME (fixP->fx_addsy); newval = 0xeb000000; as_warn_where (fixP->fx_file, fixP->fx_line, _("blx to '%s' an ARM ISA state function changed to bl"), name); md_number_to_chars (buf, newval, INSN_SIZE); temp = 3; fixP->fx_done = 1; } #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL; #endif arm_branch_common: /* We are going to store value (shifted right by two) in the instruction, in a 24 bit, signed field. Bits 26 through 32 either all clear or all set and bit 0 must be clear. For B/BL bit 1 must also be clear. */ if (value & temp) as_bad_where (fixP->fx_file, fixP->fx_line, _("misaligned branch destination")); if ((value & 0xfe000000) != 0 && (value & 0xfe000000) != 0xfe000000) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, INSN_SIZE); newval |= (value >> 2) & 0x00ffffff; /* Set the H bit on BLX instructions. */ if (temp == 1) { if (value & 2) newval |= 0x01000000; else newval &= ~0x01000000; } md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */ /* CBZ can only branch forward. */ /* Attempts to use CBZ to branch to the next instruction (which, strictly speaking, are prohibited) will be turned into no-ops. FIXME: It may be better to remove the instruction completely and perform relaxation. */ if ((offsetT) value == -2) { newval = md_chars_to_number (buf, THUMB_SIZE); newval = 0xbf00; /* NOP encoding T1 */ md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (value & ~0x7e) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3); md_number_to_chars (buf, newval, THUMB_SIZE); } } break; case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */ if (out_of_range_p (value, 8)) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= (value & 0x1ff) >> 1; md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */ if (out_of_range_p (value, 11)) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= (value & 0xfff) >> 1; md_number_to_chars (buf, newval, THUMB_SIZE); } break; /* This relocation is misnamed, it should be BRANCH21. */ case BFD_RELOC_THUMB_PCREL_BRANCH20: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) { /* Force a relocation for a branch 20 bits wide. */ fixP->fx_done = 0; } if (out_of_range_p (value, 20)) as_bad_where (fixP->fx_file, fixP->fx_line, _("conditional branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT S, J1, J2, lo, hi; S = (value & 0x00100000) >> 20; J2 = (value & 0x00080000) >> 19; J1 = (value & 0x00040000) >> 18; hi = (value & 0x0003f000) >> 12; lo = (value & 0x00000ffe) >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= (S << 10) | hi; newval2 |= (J1 << 13) | (J2 << 11) | lo; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BLX: /* If there is a blx from a thumb state function to another thumb function flip this to a bl and warn about it. */ if (fixP->fx_addsy && !S_FORCE_RELOC (fixP->fx_addsy, true) && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && THUMB_IS_FUNC (fixP->fx_addsy)) { const char *name = S_GET_NAME (fixP->fx_addsy); as_warn_where (fixP->fx_file, fixP->fx_line, _("blx to Thumb func '%s' from Thumb ISA state changed to bl"), name); newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval = newval | 0x1000; md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE); fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23; fixP->fx_done = 1; } goto thumb_bl_common; case BFD_RELOC_THUMB_PCREL_BRANCH23: /* A bl from Thumb state ISA to an internal ARM state function is converted to a blx. */ if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)) { newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval = newval & ~0x1000; md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE); fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX; fixP->fx_done = 1; } thumb_bl_common: if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX) /* For a BLX instruction, make sure that the relocation is rounded up to a word boundary. This follows the semantics of the instruction which specifies that bit 1 of the target address will come from bit 1 of the base address. */ value = (value + 3) & ~ 3; #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX) fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23; #endif if (out_of_range_p (value, 22)) { if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); else if (out_of_range_p (value, 24)) as_bad_where (fixP->fx_file, fixP->fx_line, _("Thumb2 branch out of range")); } if (fixP->fx_done || !seg->use_rela_p) encode_thumb2_b_bl_offset (buf, value); break; case BFD_RELOC_THUMB_PCREL_BRANCH25: if (out_of_range_p (value, 24)) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE); if (fixP->fx_done || !seg->use_rela_p) encode_thumb2_b_bl_offset (buf, value); break; case BFD_RELOC_8: if (fixP->fx_done || !seg->use_rela_p) *buf = value; break; case BFD_RELOC_16: if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, value, 2); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_TLS_CALL: case BFD_RELOC_ARM_THM_TLS_CALL: case BFD_RELOC_ARM_TLS_DESCSEQ: case BFD_RELOC_ARM_THM_TLS_DESCSEQ: case BFD_RELOC_ARM_TLS_GOTDESC: case BFD_RELOC_ARM_TLS_GD32: case BFD_RELOC_ARM_TLS_LE32: case BFD_RELOC_ARM_TLS_IE32: case BFD_RELOC_ARM_TLS_LDM32: case BFD_RELOC_ARM_TLS_LDO32: S_SET_THREAD_LOCAL (fixP->fx_addsy); break; /* Same handling as above, but with the arm_fdpic guard. */ case BFD_RELOC_ARM_TLS_GD32_FDPIC: case BFD_RELOC_ARM_TLS_IE32_FDPIC: case BFD_RELOC_ARM_TLS_LDM32_FDPIC: if (arm_fdpic) { S_SET_THREAD_LOCAL (fixP->fx_addsy); } else { as_bad_where (fixP->fx_file, fixP->fx_line, _("Relocation supported only in FDPIC mode")); } break; case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: break; case BFD_RELOC_ARM_GOT_PREL: if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, value, 4); break; case BFD_RELOC_ARM_TARGET2: /* TARGET2 is not partial-inplace, so we need to write the addend here for REL targets, because it won't be written out during reloc processing later. */ if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, fixP->fx_offset, 4); break; /* Relocations for FDPIC. */ case BFD_RELOC_ARM_GOTFUNCDESC: case BFD_RELOC_ARM_GOTOFFFUNCDESC: case BFD_RELOC_ARM_FUNCDESC: if (arm_fdpic) { if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, 0, 4); } else { as_bad_where (fixP->fx_file, fixP->fx_line, _("Relocation supported only in FDPIC mode")); } break; #endif case BFD_RELOC_RVA: case BFD_RELOC_32: case BFD_RELOC_ARM_TARGET1: case BFD_RELOC_ARM_ROSEGREL32: case BFD_RELOC_ARM_SBREL32: case BFD_RELOC_32_PCREL: #ifdef TE_PE case BFD_RELOC_32_SECREL: #endif if (fixP->fx_done || !seg->use_rela_p) #ifdef TE_WINCE /* For WinCE we only do this for pcrel fixups. */ if (fixP->fx_done || fixP->fx_pcrel) #endif md_number_to_chars (buf, value, 4); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PREL31: if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, 4) & 0x80000000; if ((value ^ (value >> 1)) & 0x40000000) { as_bad_where (fixP->fx_file, fixP->fx_line, _("rel31 relocation overflow")); } newval |= value & 0x7fffffff; md_number_to_chars (buf, newval, 4); } break; #endif case BFD_RELOC_ARM_CP_OFF_IMM: case BFD_RELOC_ARM_T32_CP_OFF_IMM: case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM: if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM) newval = md_chars_to_number (buf, INSN_SIZE); else newval = get_thumb32_insn (buf); if ((newval & 0x0f200f00) == 0x0d000900) { /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic has permitted values that are multiples of 2, in the range -510 to 510. */ if (value + 510 > 510 + 510 || (value & 1)) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); } else if ((newval & 0xfe001f80) == 0xec000f80) { if (value + 511 > 512 + 511 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); } else if (value + 1023 > 1023 + 1023 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); cp_off_common: sign = (offsetT) value > 0; if ((offsetT) value < 0) value = -value; if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2) newval = md_chars_to_number (buf, INSN_SIZE); else newval = get_thumb32_insn (buf); if (value == 0) { if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM) newval &= 0xffffff80; else newval &= 0xffffff00; } else { if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM) newval &= 0xff7fff80; else newval &= 0xff7fff00; if ((newval & 0x0f200f00) == 0x0d000900) { /* This is a fp16 vstr/vldr. It requires the immediate offset in the instruction is shifted left by 1 to be a half-word offset. Here, left shift by 1 first, and later right shift by 2 should get the right offset. */ value <<= 1; } newval |= (value >> 2) | (sign ? INDEX_UP : 0); } if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2) md_number_to_chars (buf, newval, INSN_SIZE); else put_thumb32_insn (buf, newval); break; case BFD_RELOC_ARM_CP_OFF_IMM_S2: case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: if (value + 255 > 255 + 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); value *= 4; goto cp_off_common; case BFD_RELOC_ARM_THUMB_OFFSET: newval = md_chars_to_number (buf, THUMB_SIZE); /* Exactly what ranges, and where the offset is inserted depends on the type of instruction, we can establish this from the top 4 bits. */ switch (newval >> 12) { case 4: /* PC load. */ /* Thumb PC loads are somewhat odd, bit 1 of the PC is forced to zero for these loads; md_pcrel_from has already compensated for this. */ if (value & 3) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, target not word aligned (0x%08lX)"), (((unsigned long) fixP->fx_frag->fr_address + (unsigned long) fixP->fx_where) & ~3) + (unsigned long) value); else if (get_recorded_alignment (seg) < 2) as_warn_where (fixP->fx_file, fixP->fx_line, _("section does not have enough alignment to ensure safe PC-relative loads")); if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 9: /* SP load/store. */ if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 6: /* Word load/store. */ if (value & ~0x7c) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 4; /* 6 - 2. */ break; case 7: /* Byte load/store. */ if (value & ~0x1f) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 6; break; case 8: /* Halfword load/store. */ if (value & ~0x3e) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 5; /* 6 - 1. */ break; default: as_bad_where (fixP->fx_file, fixP->fx_line, "Unable to process relocation for thumb opcode: %lx", (unsigned long) newval); break; } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_ADD: /* This is a complicated relocation, since we use it for all of the following immediate relocations: 3bit ADD/SUB 8bit ADD/SUB 9bit ADD/SUB SP word-aligned 10bit ADD PC/SP word-aligned The type of instruction being processed is encoded in the instruction field: 0x8000 SUB 0x00F0 Rd 0x000F Rs */ newval = md_chars_to_number (buf, THUMB_SIZE); { int rd = (newval >> 4) & 0xf; int rs = newval & 0xf; int subtract = !!(newval & 0x8000); /* Check for HI regs, only very restricted cases allowed: Adjusting SP, and using PC or SP to get an address. */ if ((rd > 7 && (rd != REG_SP || rs != REG_SP)) || (rs > 7 && rs != REG_SP && rs != REG_PC)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid Hi register with immediate")); /* If value is negative, choose the opposite instruction. */ if ((offsetT) value < 0) { value = -value; subtract = !subtract; if ((offsetT) value < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); } if (rd == REG_SP) { if (value & ~0x1fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for stack address calculation")); newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; newval |= value >> 2; } else if (rs == REG_PC || rs == REG_SP) { /* PR gas/18541. If the addition is for a defined symbol within range of an ADR instruction then accept it. */ if (subtract && value == 4 && fixP->fx_addsy != NULL) { subtract = 0; if (! S_IS_DEFINED (fixP->fx_addsy) || S_GET_SEGMENT (fixP->fx_addsy) != seg || S_IS_WEAK (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("address calculation needs a strongly defined nearby symbol")); } else { offsetT v = fixP->fx_where + fixP->fx_frag->fr_address; /* Round up to the next 4-byte boundary. */ if (v & 3) v = (v + 3) & ~ 3; else v += 4; v = S_GET_VALUE (fixP->fx_addsy) - v; if (v & ~0x3fc) { as_bad_where (fixP->fx_file, fixP->fx_line, _("symbol too far away")); } else { fixP->fx_done = 1; value = v; } } } if (subtract || value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for address calculation (value = 0x%08lX)"), (unsigned long) (subtract ? - value : value)); newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); newval |= rd << 8; newval |= value >> 2; } else if (rs == rd) { if (value & ~0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; newval |= (rd << 8) | value; } else { if (value & ~0x7) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; newval |= rd | (rs << 3) | (value << 6); } } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_IMM: newval = md_chars_to_number (buf, THUMB_SIZE); if (value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate: %ld is out of range"), (long) value); newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_SHIFT: /* 5bit shift value (0..32). LSL cannot take 32. */ newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f; temp = newval & 0xf800; if (value > 32 || (value == 32 && temp == T_OPCODE_LSL_I)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid shift value: %ld"), (long) value); /* Shifts of zero must be encoded as LSL. */ if (value == 0) newval = (newval & 0x003f) | T_OPCODE_LSL_I; /* Shifts of 32 are encoded as zero. */ else if (value == 32) value = 0; newval |= value << 6; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_VTABLE_INHERIT: case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; return; case BFD_RELOC_ARM_MOVW: case BFD_RELOC_ARM_MOVT: case BFD_RELOC_ARM_THUMB_MOVW: case BFD_RELOC_ARM_THUMB_MOVT: if (fixP->fx_done || !seg->use_rela_p) { /* REL format relocations are limited to a 16-bit addend. */ if (!fixP->fx_done) { if (value + 0x8000 > 0x7fff + 0x8000) as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); } else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT) { value >>= 16; } if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT) { newval = get_thumb32_insn (buf); newval &= 0xfbf08f00; newval |= (value & 0xf000) << 4; newval |= (value & 0x0800) << 15; newval |= (value & 0x0700) << 4; newval |= (value & 0x00ff); put_thumb32_insn (buf, newval); } else { newval = md_chars_to_number (buf, 4); newval &= 0xfff0f000; newval |= value & 0x0fff; newval |= (value & 0xf000) << 4; md_number_to_chars (buf, newval, 4); } } return; case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC: case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC: case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC: case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC: gas_assert (!fixP->fx_done); { bfd_vma insn; bool is_mov; bfd_vma encoded_addend = value; /* Check that addend can be encoded in instruction. */ if (!seg->use_rela_p && value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("the offset 0x%08lX is not representable"), (unsigned long) encoded_addend); /* Extract the instruction. */ insn = md_chars_to_number (buf, THUMB_SIZE); is_mov = (insn & 0xf800) == 0x2000; /* Encode insn. */ if (is_mov) { if (!seg->use_rela_p) insn |= encoded_addend; } else { int rd, rs; /* Extract the instruction. */ /* Encoding is the following 0x8000 SUB 0x00F0 Rd 0x000F Rs */ /* The following conditions must be true : - ADD - Rd == Rs - Rd <= 7 */ rd = (insn >> 4) & 0xf; rs = insn & 0xf; if ((insn & 0x8000) || (rd != rs) || rd > 7) as_bad_where (fixP->fx_file, fixP->fx_line, _("Unable to process relocation for thumb opcode: %lx"), (unsigned long) insn); /* Encode as ADD immediate8 thumb 1 code. */ insn = 0x3000 | (rd << 8); /* Place the encoded addend into the first 8 bits of the instruction. */ if (!seg->use_rela_p) insn |= encoded_addend; } /* Update the instruction. */ md_number_to_chars (buf, insn, THUMB_SIZE); } break; case BFD_RELOC_ARM_ALU_PC_G0_NC: case BFD_RELOC_ARM_ALU_PC_G0: case BFD_RELOC_ARM_ALU_PC_G1_NC: case BFD_RELOC_ARM_ALU_PC_G1: case BFD_RELOC_ARM_ALU_PC_G2: case BFD_RELOC_ARM_ALU_SB_G0_NC: case BFD_RELOC_ARM_ALU_SB_G0: case BFD_RELOC_ARM_ALU_SB_G1_NC: case BFD_RELOC_ARM_ALU_SB_G1: case BFD_RELOC_ARM_ALU_SB_G2: gas_assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma encoded_addend; bfd_vma addend_abs = llabs ((offsetT) value); /* Check that the absolute value of the addend can be expressed as an 8-bit constant plus a rotation. */ encoded_addend = encode_arm_immediate (addend_abs); if (encoded_addend == (unsigned int) FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, _("the offset 0x%08lX is not representable"), (unsigned long) addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is positive, use an ADD instruction. Otherwise use a SUB. Take care not to destroy the S bit. */ insn &= 0xff1fffff; if ((offsetT) value < 0) insn |= 1 << 22; else insn |= 1 << 23; /* Place the encoded addend into the first 12 bits of the instruction. */ insn &= 0xfffff000; insn |= encoded_addend; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDR_PC_G0: case BFD_RELOC_ARM_LDR_PC_G1: case BFD_RELOC_ARM_LDR_PC_G2: case BFD_RELOC_ARM_LDR_SB_G0: case BFD_RELOC_ARM_LDR_SB_G1: case BFD_RELOC_ARM_LDR_SB_G2: gas_assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = llabs ((offsetT) value); /* Check that the absolute value of the addend can be encoded in 12 bits. */ if (addend_abs >= 0x1000) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (only 12 bits available for the magnitude)"), (unsigned long) addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if ((offsetT) value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the absolute value of the addend into the first 12 bits of the instruction. */ insn &= 0xfffff000; insn |= addend_abs; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDRS_PC_G0: case BFD_RELOC_ARM_LDRS_PC_G1: case BFD_RELOC_ARM_LDRS_PC_G2: case BFD_RELOC_ARM_LDRS_SB_G0: case BFD_RELOC_ARM_LDRS_SB_G1: case BFD_RELOC_ARM_LDRS_SB_G2: gas_assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = llabs ((offsetT) value); /* Check that the absolute value of the addend can be encoded in 8 bits. */ if (addend_abs >= 0x100) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (only 8 bits available for the magnitude)"), (unsigned long) addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if ((offsetT) value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the first four bits of the absolute value of the addend into the first 4 bits of the instruction, and the remaining four into bits 8 .. 11. */ insn &= 0xfffff0f0; insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4); /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDC_PC_G0: case BFD_RELOC_ARM_LDC_PC_G1: case BFD_RELOC_ARM_LDC_PC_G2: case BFD_RELOC_ARM_LDC_SB_G0: case BFD_RELOC_ARM_LDC_SB_G1: case BFD_RELOC_ARM_LDC_SB_G2: gas_assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = llabs ((offsetT) value); /* Check that the absolute value of the addend is a multiple of four and, when divided by four, fits in 8 bits. */ if (addend_abs & 0x3) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (must be word-aligned)"), (unsigned long) addend_abs); if ((addend_abs >> 2) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (must be an 8-bit number of words)"), (unsigned long) addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if ((offsetT) value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the addend (divided by four) into the first eight bits of the instruction. */ insn &= 0xfffffff0; insn |= addend_abs >> 2; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH5: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { /* Force a relocation for a branch 5 bits wide. */ fixP->fx_done = 0; } if (v8_1_branch_value_check (value, 5, false) == FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_BRANCH_OFF); if (fixP->fx_done || !seg->use_rela_p) { addressT boff = value >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval |= (boff << 7); md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BFCSEL: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { fixP->fx_done = 0; } if ((value & ~0x7f) && ((value & ~0x3f) != (valueT) ~0x3f)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); addressT boff = ((newval & 0x0780) >> 7) << 1; addressT diff = value - boff; if (diff == 4) { newval |= 1 << 1; /* T bit. */ } else if (diff != 2) { as_bad_where (fixP->fx_file, fixP->fx_line, _("out of range label-relative fixup value")); } md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_ARM_THUMB_BF17: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { /* Force a relocation for a branch 17 bits wide. */ fixP->fx_done = 0; } if (v8_1_branch_value_check (value, 17, true) == FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_BRANCH_OFF); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT immA, immB, immC; immA = (value & 0x0001f000) >> 12; immB = (value & 0x00000ffc) >> 2; immC = (value & 0x00000002) >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= immA; newval2 |= (immC << 11) | (immB << 1); md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_ARM_THUMB_BF19: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { /* Force a relocation for a branch 19 bits wide. */ fixP->fx_done = 0; } if (v8_1_branch_value_check (value, 19, true) == FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_BRANCH_OFF); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT immA, immB, immC; immA = (value & 0x0007f000) >> 12; immB = (value & 0x00000ffc) >> 2; immC = (value & 0x00000002) >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= immA; newval2 |= (immC << 11) | (immB << 1); md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_ARM_THUMB_BF13: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { /* Force a relocation for a branch 13 bits wide. */ fixP->fx_done = 0; } if (v8_1_branch_value_check (value, 13, true) == FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, BAD_BRANCH_OFF); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT immA, immB, immC; immA = (value & 0x00001000) >> 12; immB = (value & 0x00000ffc) >> 2; immC = (value & 0x00000002) >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= immA; newval2 |= (immC << 11) | (immB << 1); md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_ARM_THUMB_LOOP12: if (fixP->fx_addsy && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && !S_FORCE_RELOC (fixP->fx_addsy, true) && ARM_IS_FUNC (fixP->fx_addsy) && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main)) { /* Force a relocation for a branch 12 bits wide. */ fixP->fx_done = 0; } bfd_vma insn = get_thumb32_insn (buf); /* le lr,