/* IBM RS/6000 native-dependent code for GDB, the GNU debugger. Copyright (C) 1986-2024 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "inferior.h" #include "target.h" #include "gdbcore.h" #include "symfile.h" #include "objfiles.h" #include "bfd.h" #include "gdb-stabs.h" #include "regcache.h" #include "arch-utils.h" #include "inf-child.h" #include "inf-ptrace.h" #include "ppc-tdep.h" #include "rs6000-aix-tdep.h" #include "exec.h" #include "observable.h" #include "xcoffread.h" #include #include #include #include #include #include #include #include "gdbsupport/eintr.h" #include #include #include #include "gdb_bfd.h" #include #define __LDINFO_PTRACE32__ /* for __ld_info32 */ #define __LDINFO_PTRACE64__ /* for __ld_info64 */ #include #include /* Header files for getting ppid in AIX of a child process. */ #include #include /* Header files for alti-vec reg. */ #include /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for debugging 32-bit and 64-bit processes. Define a typedef and macros for accessing fields in the appropriate structures. */ /* In 32-bit compilation mode (which is the only mode from which ptrace() works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */ #if defined (__ld_info32) || defined (__ld_info64) # define ARCH3264 #endif /* Return whether the current architecture is 64-bit. */ #ifndef ARCH3264 # define ARCH64() 0 #else # define ARCH64() (register_size (current_inferior ()->arch (), 0) == 8) #endif class rs6000_nat_target final : public inf_ptrace_target { public: void fetch_registers (struct regcache *, int) override; void store_registers (struct regcache *, int) override; enum target_xfer_status xfer_partial (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) override; void create_inferior (const char *, const std::string &, char **, int) override; ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override; /* Fork detection related functions, For adding multi process debugging support. */ void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override; const struct target_desc *read_description () override; int insert_fork_catchpoint (int) override; int remove_fork_catchpoint (int) override; protected: void post_startup_inferior (ptid_t ptid) override; private: enum target_xfer_status xfer_shared_libraries (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len); }; static rs6000_nat_target the_rs6000_nat_target; /* The below declaration is to track number of times, parent has reported fork event before its children. */ static std::list aix_pending_parent; /* The below declaration is for a child process event that is reported before its corresponding parent process in the event of a fork (). */ static std::list aix_pending_children; static void aix_remember_child (pid_t pid) { aix_pending_children.push_front (pid); } static void aix_remember_parent (pid_t pid) { aix_pending_parent.push_front (pid); } /* This function returns a parent of a child process. */ static pid_t find_my_aix_parent (pid_t child_pid) { struct procsinfo ProcessBuffer1; if (getprocs (&ProcessBuffer1, sizeof (ProcessBuffer1), NULL, 0, &child_pid, 1) != 1) return 0; else return ProcessBuffer1.pi_ppid; } /* In the below function we check if there was any child process pending. If it exists we return it from the list, otherwise we return a null. */ static pid_t has_my_aix_child_reported (pid_t parent_pid) { pid_t child = 0; auto it = std::find_if (aix_pending_children.begin (), aix_pending_children.end (), [=] (pid_t child_pid) { return find_my_aix_parent (child_pid) == parent_pid; }); if (it != aix_pending_children.end ()) { child = *it; aix_pending_children.erase (it); } return child; } /* In the below function we check if there was any parent process pending. If it exists we return it from the list, otherwise we return a null. */ static pid_t has_my_aix_parent_reported (pid_t child_pid) { pid_t my_parent = find_my_aix_parent (child_pid); auto it = std::find (aix_pending_parent.begin (), aix_pending_parent.end (), my_parent); if (it != aix_pending_parent.end ()) { aix_pending_parent.erase (it); return my_parent; } return 0; } /* Given REGNO, a gdb register number, return the corresponding number suitable for use as a ptrace() parameter. Return -1 if there's no suitable mapping. Also, set the int pointed to by ISFLOAT to indicate whether REGNO is a floating point register. */ static int regmap (struct gdbarch *gdbarch, int regno, int *isfloat) { ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); *isfloat = 0; if (tdep->ppc_gp0_regnum <= regno && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) return regno; else if (tdep->ppc_fp0_regnum >= 0 && tdep->ppc_fp0_regnum <= regno && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) { *isfloat = 1; return regno - tdep->ppc_fp0_regnum + FPR0; } else if (regno == gdbarch_pc_regnum (gdbarch)) return IAR; else if (regno == tdep->ppc_ps_regnum) return MSR; else if (regno == tdep->ppc_cr_regnum) return CR; else if (regno == tdep->ppc_lr_regnum) return LR; else if (regno == tdep->ppc_ctr_regnum) return CTR; else if (regno == tdep->ppc_xer_regnum) return XER; else if (tdep->ppc_fpscr_regnum >= 0 && regno == tdep->ppc_fpscr_regnum) return FPSCR; else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum) return MQ; else return -1; } /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */ static int rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf) { #ifdef HAVE_PTRACE64 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf); #else int ret = ptrace (req, id, (int *)addr, data, buf); #endif #if 0 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", req, id, (unsigned int)addr, data, (unsigned int)buf, ret); #endif return ret; } /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */ static int rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf) { #ifdef ARCH3264 # ifdef HAVE_PTRACE64 int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); # else int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); # endif #else int ret = 0; #endif #if 0 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n", req, id, hex_string (addr), data, (unsigned int)buf, ret); #endif return ret; } /* Store the vsx registers. */ static void store_vsx_register_aix (struct regcache *regcache, int regno) { int ret; struct gdbarch *gdbarch = regcache->arch (); ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct thrdentry64 thrdentry; __vsx_context_t vsx; pid_t pid = inferior_ptid.pid (); tid64_t thrd_i = 0; if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), &thrd_i, 1) == 1) thrd_i = thrdentry.ti_tid; memset(&vsx, 0, sizeof(__vsx_context_t)); if (__power_vsx() && thrd_i > 0) { if (ARCH64 ()) ret = rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0); else ret = rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *)&vsx, 0, 0); if (ret < 0) return; regcache->raw_collect (regno, &(vsx.__vsr_dw1[0])+ regno - tdep->ppc_vsr0_upper_regnum); if (ARCH64 ()) ret = rs6000_ptrace64 (PTT_WRITE_VSX, thrd_i, (long long) &vsx, 0, 0); else ret = rs6000_ptrace32 (PTT_WRITE_VSX, thrd_i, (int *) &vsx, 0, 0); if (ret < 0) perror_with_name (_("Unable to write VSX registers after reading it")); } } /* Store Altivec registers. */ static void store_altivec_register_aix (struct regcache *regcache, int regno) { int ret; struct gdbarch *gdbarch = regcache->arch (); ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); struct thrdentry64 thrdentry; __vmx_context_t vmx; pid_t pid = inferior_ptid.pid (); tid64_t thrd_i = 0; if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), &thrd_i, 1) == 1) thrd_i = thrdentry.ti_tid; memset(&vmx, 0, sizeof(__vmx_context_t)); if (__power_vmx() && thrd_i > 0) { if (ARCH64 ()) ret = rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0); else ret = rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0); if (ret < 0) return; regcache->raw_collect (regno, &(vmx.__vr[0]) + regno - tdep->ppc_vr0_regnum); if (ARCH64 ()) ret = rs6000_ptrace64 (PTT_WRITE_VEC, thrd_i, (long long) &vmx, 0, 0); else ret = rs6000_ptrace32 (PTT_WRITE_VEC, thrd_i, (int *) &vmx, 0, 0); if (ret < 0) perror_with_name (_("Unable to store AltiVec register after reading it")); } } /* Supply altivec registers. */ static void supply_vrregset_aix (struct regcache *regcache, __vmx_context_t *vmx) { int i; struct gdbarch *gdbarch = regcache->arch (); ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; for (i = 0; i < num_of_vrregs; i++) regcache->raw_supply (tdep->ppc_vr0_regnum + i, &(vmx->__vr[i])); regcache->raw_supply (tdep->ppc_vrsave_regnum, &(vmx->__vrsave)); regcache->raw_supply (tdep->ppc_vrsave_regnum - 1, &(vmx->__vscr)); } /* Fetch altivec register. */ static void fetch_altivec_registers_aix (struct regcache *regcache) { struct thrdentry64 thrdentry; __vmx_context_t vmx; pid_t pid = current_inferior ()->pid; tid64_t thrd_i = 0; if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), &thrd_i, 1) == 1) thrd_i = thrdentry.ti_tid; memset(&vmx, 0, sizeof(__vmx_context_t)); if (__power_vmx() && thrd_i > 0) { if (ARCH64 ()) rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0); else rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0); supply_vrregset_aix (regcache, &vmx); } } /* supply vsx register. */ static void supply_vsxregset_aix (struct regcache *regcache, __vsx_context_t *vsx) { int i; struct gdbarch *gdbarch = regcache->arch (); ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); for (i = 0; i < ppc_num_vshrs; i++) regcache->raw_supply (tdep->ppc_vsr0_upper_regnum + i, &(vsx->__vsr_dw1[i])); } /* Fetch vsx registers. */ static void fetch_vsx_registers_aix (struct regcache *regcache) { struct thrdentry64 thrdentry; __vsx_context_t vsx; pid_t pid = current_inferior ()->pid; tid64_t thrd_i = 0; if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), &thrd_i, 1) == 1) thrd_i = thrdentry.ti_tid; memset(&vsx, 0, sizeof(__vsx_context_t)); if (__power_vsx() && thrd_i > 0) { if (ARCH64 ()) rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0); else rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *) &vsx, 0, 0); supply_vsxregset_aix (regcache, &vsx); } } void rs6000_nat_target::post_startup_inferior (ptid_t ptid) { /* In AIX to turn on multi process debugging in ptrace PT_MULTI is the option to be passed, with the process ID which can fork () and the data parameter [fourth parameter] must be 1. */ if (!ARCH64 ()) rs6000_ptrace32 (PT_MULTI, ptid.pid(), 0, 1, 0); else rs6000_ptrace64 (PT_MULTI, ptid.pid(), 0, 1, 0); } void rs6000_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid, target_waitkind fork_kind, bool follow_child, bool detach_fork) { /* Once the fork event is detected the infrun.c code calls the target_follow_fork to take care of follow child and detach the child activity which is done using the function below. */ inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind, follow_child, detach_fork); /* If we detach fork and follow child we do not want the child process to generate events that ptrace can trace. Hence we detach it. */ if (detach_fork && !follow_child) { if (ARCH64 ()) rs6000_ptrace64 (PT_DETACH, child_ptid.pid (), 0, 0, 0); else rs6000_ptrace32 (PT_DETACH, child_ptid.pid (), 0, 0, 0); } } /* Functions for catchpoint in AIX. */ int rs6000_nat_target::insert_fork_catchpoint (int pid) { return 0; } int rs6000_nat_target::remove_fork_catchpoint (int pid) { return 0; } /* Fetch register REGNO from the inferior. */ static void fetch_register (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = regcache->arch (); int addr[PPC_MAX_REGISTER_SIZE]; int nr, isfloat; pid_t pid = regcache->ptid ().pid (); /* Retrieved values may be -1, so infer errors from errno. */ errno = 0; /* Alti-vec register. */ if (altivec_register_p (gdbarch, regno)) { fetch_altivec_registers_aix (regcache); return; } /* VSX register. */ if (vsx_register_p (gdbarch, regno)) { fetch_vsx_registers_aix (regcache); return; } nr = regmap (gdbarch, regno, &isfloat); /* Floating-point registers. */ if (isfloat) rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0); /* Bogus register number. */ else if (nr < 0) { if (regno >= gdbarch_num_regs (gdbarch)) gdb_printf (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); return; } /* Fixed-point registers. */ else { if (!ARCH64 ()) *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0); else { /* PT_READ_GPR requires the buffer parameter to point to long long, even if the register is really only 32 bits. */ long long buf; rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf); if (register_size (gdbarch, regno) == 8) memcpy (addr, &buf, 8); else *addr = buf; } } if (!errno) regcache->raw_supply (regno, (char *) addr); else { #if 0 /* FIXME: this happens 3 times at the start of each 64-bit program. */ perror (_("ptrace read")); #endif errno = 0; } } /* Store register REGNO back into the inferior. */ static void store_register (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = regcache->arch (); int addr[PPC_MAX_REGISTER_SIZE]; int nr, isfloat; pid_t pid = regcache->ptid ().pid (); /* Fetch the register's value from the register cache. */ regcache->raw_collect (regno, addr); /* -1 can be a successful return value, so infer errors from errno. */ errno = 0; if (altivec_register_p (gdbarch, regno)) { store_altivec_register_aix (regcache, regno); return; } if (vsx_register_p (gdbarch, regno)) { store_vsx_register_aix (regcache, regno); return; } nr = regmap (gdbarch, regno, &isfloat); /* Floating-point registers. */ if (isfloat) rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0); /* Bogus register number. */ else if (nr < 0) { if (regno >= gdbarch_num_regs (gdbarch)) gdb_printf (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); } /* Fixed-point registers. */ else { /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors, the register's value is passed by value, but for 64-bit inferiors, the address of a buffer containing the value is passed. */ if (!ARCH64 ()) rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0); else { /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte area, even if the register is really only 32 bits. */ long long buf; if (register_size (gdbarch, regno) == 8) memcpy (&buf, addr, 8); else buf = *addr; rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf); } } if (errno) { perror (_("ptrace write")); errno = 0; } } /* Read from the inferior all registers if REGNO == -1 and just register REGNO otherwise. */ void rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = regcache->arch (); if (regno != -1) fetch_register (regcache, regno); else { ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Read 32 general purpose registers. */ for (regno = tdep->ppc_gp0_regnum; regno < tdep->ppc_gp0_regnum + ppc_num_gprs; regno++) { fetch_register (regcache, regno); } /* Read general purpose floating point registers. */ if (tdep->ppc_fp0_regnum >= 0) for (regno = 0; regno < ppc_num_fprs; regno++) fetch_register (regcache, tdep->ppc_fp0_regnum + regno); if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) fetch_altivec_registers_aix (regcache); if (tdep->ppc_vsr0_upper_regnum != -1) fetch_vsx_registers_aix (regcache); /* Read special registers. */ fetch_register (regcache, gdbarch_pc_regnum (gdbarch)); fetch_register (regcache, tdep->ppc_ps_regnum); fetch_register (regcache, tdep->ppc_cr_regnum); fetch_register (regcache, tdep->ppc_lr_regnum); fetch_register (regcache, tdep->ppc_ctr_regnum); fetch_register (regcache, tdep->ppc_xer_regnum); if (tdep->ppc_fpscr_regnum >= 0) fetch_register (regcache, tdep->ppc_fpscr_regnum); if (tdep->ppc_mq_regnum >= 0) fetch_register (regcache, tdep->ppc_mq_regnum); } } const struct target_desc * rs6000_nat_target::read_description () { if (ARCH64()) { if (__power_vsx ()) return tdesc_powerpc_vsx64; else if (__power_vmx ()) return tdesc_powerpc_altivec64; } else { if (__power_vsx ()) return tdesc_powerpc_vsx32; else if (__power_vmx ()) return tdesc_powerpc_altivec32; } return NULL; } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ void rs6000_nat_target::store_registers (struct regcache *regcache, int regno) { struct gdbarch *gdbarch = regcache->arch (); if (regno != -1) store_register (regcache, regno); else { ppc_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* Write general purpose registers first. */ for (regno = tdep->ppc_gp0_regnum; regno < tdep->ppc_gp0_regnum + ppc_num_gprs; regno++) { store_register (regcache, regno); } /* Write floating point registers. */ if (tdep->ppc_fp0_regnum >= 0) for (regno = 0; regno < ppc_num_fprs; regno++) store_register (regcache, tdep->ppc_fp0_regnum + regno); /* Write special registers. */ store_register (regcache, gdbarch_pc_regnum (gdbarch)); store_register (regcache, tdep->ppc_ps_regnum); store_register (regcache, tdep->ppc_cr_regnum); store_register (regcache, tdep->ppc_lr_regnum); store_register (regcache, tdep->ppc_ctr_regnum); store_register (regcache, tdep->ppc_xer_regnum); if (tdep->ppc_fpscr_regnum >= 0) store_register (regcache, tdep->ppc_fpscr_regnum); if (tdep->ppc_mq_regnum >= 0) store_register (regcache, tdep->ppc_mq_regnum); } } /* Implement the to_xfer_partial target_ops method. */ enum target_xfer_status rs6000_nat_target::xfer_partial (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { pid_t pid = inferior_ptid.pid (); int arch64 = ARCH64 (); switch (object) { case TARGET_OBJECT_LIBRARIES_AIX: return xfer_shared_libraries (object, annex, readbuf, writebuf, offset, len, xfered_len); case TARGET_OBJECT_MEMORY: { union { PTRACE_TYPE_RET word; gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; } buffer; ULONGEST rounded_offset; LONGEST partial_len; /* Round the start offset down to the next long word boundary. */ rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); /* Since ptrace will transfer a single word starting at that rounded_offset the partial_len needs to be adjusted down to that (remember this function only does a single transfer). Should the required length be even less, adjust it down again. */ partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; if (partial_len > len) partial_len = len; if (writebuf) { /* If OFFSET:PARTIAL_LEN is smaller than ROUNDED_OFFSET:WORDSIZE then a read/modify write will be needed. Read in the entire word. */ if (rounded_offset < offset || (offset + partial_len < rounded_offset + sizeof (PTRACE_TYPE_RET))) { /* Need part of initial word -- fetch it. */ if (arch64) buffer.word = rs6000_ptrace64 (PT_READ_I, pid, rounded_offset, 0, NULL); else buffer.word = rs6000_ptrace32 (PT_READ_I, pid, (int *) (uintptr_t) rounded_offset, 0, NULL); } /* Copy data to be written over corresponding part of buffer. */ memcpy (buffer.byte + (offset - rounded_offset), writebuf, partial_len); errno = 0; if (arch64) rs6000_ptrace64 (PT_WRITE_D, pid, rounded_offset, buffer.word, NULL); else rs6000_ptrace32 (PT_WRITE_D, pid, (int *) (uintptr_t) rounded_offset, buffer.word, NULL); if (errno) return TARGET_XFER_EOF; } if (readbuf) { errno = 0; if (arch64) buffer.word = rs6000_ptrace64 (PT_READ_I, pid, rounded_offset, 0, NULL); else buffer.word = rs6000_ptrace32 (PT_READ_I, pid, (int *)(uintptr_t)rounded_offset, 0, NULL); if (errno) return TARGET_XFER_EOF; /* Copy appropriate bytes out of the buffer. */ memcpy (readbuf, buffer.byte + (offset - rounded_offset), partial_len); } *xfered_len = (ULONGEST) partial_len; return TARGET_XFER_OK; } default: return TARGET_XFER_E_IO; } } /* Wait for the child specified by PTID to do something. Return the process ID of the child, or MINUS_ONE_PTID in case of error; store the status in *OURSTATUS. */ ptid_t rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, target_wait_flags options) { pid_t pid; int status, save_errno; while (1) { set_sigint_trap (); pid = gdb::waitpid (ptid.pid (), &status, 0); save_errno = errno; clear_sigint_trap (); if (pid == -1) { gdb_printf (gdb_stderr, _("Child process unexpectedly missing: %s.\n"), safe_strerror (save_errno)); ourstatus->set_ignore (); return minus_one_ptid; } /* Ignore terminated detached child processes. */ if (!WIFSTOPPED (status) && find_inferior_pid (this, pid) == nullptr) continue; /* Check for a fork () event. */ if ((status & 0xff) == W_SFWTED) { /* Checking whether it is a parent or a child event. */ /* If the event is a child we check if there was a parent event recorded before. If yes we got the parent child relationship. If not we push this child and wait for the next fork () event. */ if (find_inferior_pid (this, pid) == nullptr) { pid_t parent_pid = has_my_aix_parent_reported (pid); if (parent_pid > 0) { ourstatus->set_forked (ptid_t (pid)); return ptid_t (parent_pid); } aix_remember_child (pid); } /* If the event is a parent we check if there was a child event recorded before. If yes we got the parent child relationship. If not we push this parent and wait for the next fork () event. */ else { pid_t child_pid = has_my_aix_child_reported (pid); if (child_pid > 0) { ourstatus->set_forked (ptid_t (child_pid)); return ptid_t (pid); } aix_remember_parent (pid); } continue; } break; } /* AIX has a couple of strange returns from wait(). */ /* stop after load" status. */ if (status == 0x57c) ourstatus->set_loaded (); /* 0x7f is signal 0. */ else if (status == 0x7f) ourstatus->set_spurious (); /* A normal waitstatus. Let the usual macros deal with it. */ else *ourstatus = host_status_to_waitstatus (status); return ptid_t (pid); } /* Set the current architecture from the host running GDB. Called when starting a child process. */ void rs6000_nat_target::create_inferior (const char *exec_file, const std::string &allargs, char **env, int from_tty) { enum bfd_architecture arch; unsigned long mach; bfd abfd; inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); if (__power_rs ()) { arch = bfd_arch_rs6000; mach = bfd_mach_rs6k; } else { arch = bfd_arch_powerpc; mach = bfd_mach_ppc; } /* FIXME: schauer/2002-02-25: We don't know if we are executing a 32 or 64 bit executable, and have no way to pass the proper word size to rs6000_gdbarch_init. So we have to avoid switching to a new architecture, if the architecture matches already. Blindly calling rs6000_gdbarch_init used to work in older versions of GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to determine the wordsize. */ if (current_program_space->exec_bfd ()) { const struct bfd_arch_info *exec_bfd_arch_info; exec_bfd_arch_info = bfd_get_arch_info (current_program_space->exec_bfd ()); if (arch == exec_bfd_arch_info->arch) return; } bfd_default_set_arch_mach (&abfd, arch, mach); gdbarch_info info; info.bfd_arch_info = bfd_get_arch_info (&abfd); info.abfd = current_program_space->exec_bfd (); if (!gdbarch_update_p (current_inferior (), info)) internal_error (_("rs6000_create_inferior: failed " "to select architecture")); } /* Shared Object support. */ /* Return the LdInfo data for the given process. Raises an error if the data could not be obtained. */ static gdb::byte_vector rs6000_ptrace_ldinfo (ptid_t ptid) { const int pid = ptid.pid (); gdb::byte_vector ldi (1024); int rc = -1; while (1) { if (ARCH64 ()) rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (), ldi.size (), NULL); else rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (), ldi.size (), NULL); if (rc != -1) break; /* Success, we got the entire ld_info data. */ if (errno != ENOMEM) perror_with_name (_("ptrace ldinfo")); /* ldi is not big enough. Double it and try again. */ ldi.resize (ldi.size () * 2); } return ldi; } /* Implement the to_xfer_partial target_ops method for TARGET_OBJECT_LIBRARIES_AIX objects. */ enum target_xfer_status rs6000_nat_target::xfer_shared_libraries (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { ULONGEST result; /* This function assumes that it is being run with a live process. Core files are handled via gdbarch. */ gdb_assert (target_has_execution ()); if (writebuf) return TARGET_XFER_E_IO; gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid); result = rs6000_aix_ld_info_to_xml (current_inferior ()->arch (), ldi_buf.data (), readbuf, offset, len, 1); if (result == 0) return TARGET_XFER_EOF; else { *xfered_len = result; return TARGET_XFER_OK; } } void _initialize_rs6000_nat (); void _initialize_rs6000_nat () { add_inf_child_target (&the_rs6000_nat_target); }